test.py 3.35 KB
Newer Older
David Pollack's avatar
David Pollack committed
1
import unittest
Soumith Chintala's avatar
Soumith Chintala committed
2
import torchaudio
David Pollack's avatar
David Pollack committed
3
import math
David Pollack's avatar
David Pollack committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os

class Test_LoadSave(unittest.TestCase):
    test_dirpath = os.path.dirname(os.path.realpath(__file__))
    test_filepath = os.path.join(test_dirpath, "steam-train-whistle-daniel_simon.mp3")
    def test_load(self):
        # check normal loading
        x, sr = torchaudio.load(self.test_filepath)
        self.assertEqual(sr, 44100)
        self.assertEqual(x.size(), (278756,2))

        # check normalizing
        x, sr = torchaudio.load(self.test_filepath, normalization=True)
        self.assertTrue(x.min() >= -1.0)
        self.assertTrue(x.max() <= 1.0)

        # check raising errors
        with self.assertRaises(OSError):
            torchaudio.load("file-does-not-exist.mp3")

        with self.assertRaises(OSError):
            tdir = os.path.join(os.path.dirname(self.test_dirpath), "torchaudio")
            torchaudio.load(tdir)

    def test_save(self):
        # load signal
        x, sr = torchaudio.load(self.test_filepath)

        # check save
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        torchaudio.save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # check automatic normalization
        x /= 1 << 31
        torchaudio.save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # test save 1d tensor
        x = x[:, 0] # get mono signal
        x.squeeze_() # remove channel dim
        torchaudio.save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't allow invalid sizes as inputs
        with self.assertRaises(ValueError):
            x.unsqueeze_(0) # N x L not L x N
            torchaudio.save(new_filepath, x, sr)

        with self.assertRaises(ValueError):
            x.squeeze_()
            x.unsqueeze_(1)
            x.unsqueeze_(0) # 1 x L x 1
            torchaudio.save(new_filepath, x, sr)

        # automatically convert sr from floating point to int
        x.squeeze_(0)
        torchaudio.save(new_filepath, x, float(sr))
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't allow uneven integers
        with self.assertRaises(TypeError):
            torchaudio.save(new_filepath, x, float(sr) + 0.5)
            self.assertTrue(os.path.isfile(new_filepath))
            os.unlink(new_filepath)

        # don't save to folders that don't exist
        with self.assertRaises(OSError):
            new_filepath = os.path.join(self.test_dirpath, "no-path", "test.wav")
            torchaudio.save(new_filepath, x, sr)
Soumith Chintala's avatar
Soumith Chintala committed
78

David Pollack's avatar
David Pollack committed
79
80
81
steam_train = "assets/steam-train-whistle-daniel_simon.mp3"

x, sample_rate = torchaudio.load(steam_train)
Soumith Chintala's avatar
Soumith Chintala committed
82
83
84
85
86
87
print(sample_rate)
print(x.size())
print(x[10000])
print(x.min(), x.max())
print(x.mean(), x.std())

David Pollack's avatar
David Pollack committed
88
x, sample_rate = torchaudio.load(steam_train,
Soumith Chintala's avatar
Soumith Chintala committed
89
90
91
92
93
                                 out=torch.LongTensor())
print(sample_rate)
print(x.size())
print(x[10000])
print(x.min(), x.max())
David Pollack's avatar
David Pollack committed
94
95
96
97
98
99
100
101
102
103
104
105

sine_wave = "assets/sinewave.wav"
sr = 16000
freq = 440
volume = 0.3

y = (torch.cos(2*math.pi*torch.arange(0, 4*sr) * freq/sr)).float()
y.unsqueeze_(1)
# y is between -1 and 1, so must scale
y = (y*volume*2**31).long()
torchaudio.save(sine_wave, y, sr)
print(y.min(), y.max())
106

David Pollack's avatar
David Pollack committed
107
108
if __name__ == '__main__':
    unittest.main()