fusion.py 1.05 KB
Newer Older
Pingchuan Ma's avatar
Pingchuan Ma committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch


class FeedForwardModule(torch.nn.Module):
    r"""Positionwise feed forward layer.

    Args:
        input_dim (int): input dimension.
        hidden_dim (int): hidden dimension.
        dropout (float, optional): dropout probability. (Default: 0.0)
    """

    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, dropout: float = 0.0) -> None:
        super().__init__()
        self.sequential = torch.nn.Sequential(
            torch.nn.LayerNorm(input_dim),
            torch.nn.Linear(input_dim, hidden_dim, bias=True),
            torch.nn.SiLU(),
            torch.nn.Dropout(dropout),
            torch.nn.Linear(hidden_dim, output_dim, bias=True),
            torch.nn.Dropout(dropout),
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        r"""
        Args:
            input (torch.Tensor): with shape `(*, D)`.

        Returns:
            torch.Tensor: output, with shape `(*, D)`.
        """
        return self.sequential(input)


def fusion_module():
    return FeedForwardModule(1024, 3072, 512, 0.1)