lightning.py 6.14 KB
Newer Older
Pingchuan Ma's avatar
Pingchuan Ma committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import itertools
import math

from collections import namedtuple
from typing import List, Tuple

import sentencepiece as spm

import torch
import torchaudio
from models.conformer_rnnt import conformer_rnnt
from models.emformer_rnnt import emformer_rnnt
from models.resnet import video_resnet
from models.resnet1d import audio_resnet
from pytorch_lightning import LightningModule
from schedulers import WarmupCosineScheduler
from torchaudio.models import Hypothesis, RNNTBeamSearch

_expected_spm_vocab_size = 1023

Batch = namedtuple("Batch", ["inputs", "input_lengths", "targets", "target_lengths"])


def post_process_hypos(
    hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
    tokens_idx = 0
    score_idx = 3
    post_process_remove_list = [
        sp_model.unk_id(),
        sp_model.eos_id(),
        sp_model.pad_id(),
    ]
    filtered_hypo_tokens = [
        [token_index for token_index in h[tokens_idx][1:] if token_index not in post_process_remove_list] for h in hypos
    ]
    hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
    hypos_ids = [h[tokens_idx][1:] for h in hypos]
    hypos_score = [[math.exp(h[score_idx])] for h in hypos]

    nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids))

    return nbest_batch


class ConformerRNNTModule(LightningModule):
    def __init__(self, args=None, sp_model=None, pretrained_model_path=None):
        super().__init__()
        self.save_hyperparameters(args)
        self.args = args
        self.sp_model = sp_model
        spm_vocab_size = self.sp_model.get_piece_size()
        assert spm_vocab_size == _expected_spm_vocab_size, (
            "The model returned by conformer_rnnt_base expects a SentencePiece model of "
            f"vocabulary size {_expected_spm_vocab_size}, but the given SentencePiece model has a vocabulary size "
            f"of {spm_vocab_size}. Please provide a correctly configured SentencePiece model."
        )
        self.blank_idx = spm_vocab_size

        if args.md == "v":
            self.frontend = video_resnet()
        if args.md == "a":
            self.frontend = audio_resnet()

        if args.mode == "online":
            self.model = emformer_rnnt()
        if args.mode == "offline":
            self.model = conformer_rnnt()

        # -- initialise
        if args.pretrained_model_path:
            ckpt = torch.load(args.pretrained_model_path, map_location=lambda storage, loc: storage)
            tmp_ckpt = {
                k.replace("encoder.frontend.", ""): v for k, v in ckpt.items() if k.startswith("encoder.frontend.")
            }
            self.frontend.load_state_dict(tmp_ckpt)

        self.loss = torchaudio.transforms.RNNTLoss(reduction="sum")

        self.optimizer = torch.optim.AdamW(
            itertools.chain(*([self.frontend.parameters(), self.model.parameters()])),
            lr=8e-4,
            weight_decay=0.06,
            betas=(0.9, 0.98),
        )

        self.automatic_optimization = False

    def _step(self, batch, _, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        features = self.frontend(batch.inputs)
        output, src_lengths, _, _ = self.model(
            features, batch.input_lengths, prepended_targets, prepended_target_lengths
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)

        return loss

    def configure_optimizers(self):
        self.warmup_lr_scheduler = WarmupCosineScheduler(
            self.optimizer,
            10,
            self.args.epochs,
            len(self.trainer.datamodule.train_dataloader()) / self.trainer.num_devices / self.trainer.num_nodes,
        )
        self.lr_scheduler_interval = "step"
        return (
            [self.optimizer],
            [{"scheduler": self.warmup_lr_scheduler, "interval": self.lr_scheduler_interval}],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        x = self.frontend(batch.inputs.to(self.device))
        hypotheses = decoder(x, batch.input_lengths.to(self.device), beam_width=20)
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        """Custom training step.

        By default, DDP does the following on each train step:
        - For each GPU, compute loss and gradient on shard of training data.
        - Sync and average gradients across all GPUs. The final gradient
          is (sum of gradients across all GPUs) / N, where N is the world
          size (total number of GPUs).
        - Update parameters on each GPU.

        Here, we do the following:
        - For k-th GPU, compute loss and scale it by (N / B_total), where B_total is
          the sum of batch sizes across all GPUs. Compute gradient from scaled loss.
        - Sync and average gradients across all GPUs. The final gradient
          is (sum of gradients across all GPUs) / B_total.
        - Update parameters on each GPU.

        Doing so allows us to account for the variability in batch sizes that
        variable-length sequential data commonly yields.
        """

        opt = self.optimizers()
        opt.zero_grad()
        loss = self._step(batch, batch_idx, "train")
        batch_size = batch.inputs.size(0)
        batch_sizes = self.all_gather(batch_size)

        loss *= batch_sizes.size(0) / batch_sizes.sum()  # world size / batch size
        self.manual_backward(loss)
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 10)
        opt.step()

        sch = self.lr_schedulers()
        sch.step()

        self.log("monitoring_step", self.global_step)

        return loss

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "test")