lightning_av.py 5.16 KB
Newer Older
Pingchuan Ma's avatar
Pingchuan Ma committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import itertools
import math

from collections import namedtuple
from typing import List, Tuple

import sentencepiece as spm

import torch
import torchaudio
from models.conformer_rnnt import conformer_rnnt
from models.emformer_rnnt import emformer_rnnt
from models.fusion import fusion_module
from models.resnet import video_resnet
from models.resnet1d import audio_resnet
from pytorch_lightning import LightningModule
from schedulers import WarmupCosineScheduler
from torchaudio.models import Hypothesis, RNNTBeamSearch


_expected_spm_vocab_size = 1023

AVBatch = namedtuple("AVBatch", ["audios", "videos", "audio_lengths", "video_lengths", "targets", "target_lengths"])


def post_process_hypos(
    hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
    tokens_idx = 0
    score_idx = 3
    post_process_remove_list = [
        sp_model.unk_id(),
        sp_model.eos_id(),
        sp_model.pad_id(),
    ]
    filtered_hypo_tokens = [
        [token_index for token_index in h[tokens_idx][1:] if token_index not in post_process_remove_list] for h in hypos
    ]
    hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
    hypos_ids = [h[tokens_idx][1:] for h in hypos]
    hypos_score = [[math.exp(h[score_idx])] for h in hypos]

    nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids))

    return nbest_batch


class AVConformerRNNTModule(LightningModule):
    def __init__(self, args=None, sp_model=None):
        super().__init__()
        self.save_hyperparameters(args)
        self.args = args
        self.sp_model = sp_model
        spm_vocab_size = self.sp_model.get_piece_size()
        assert spm_vocab_size == _expected_spm_vocab_size, (
            "The model returned by conformer_rnnt_base expects a SentencePiece model of "
            f"vocabulary size {_expected_spm_vocab_size}, but the given SentencePiece model has a vocabulary size "
            f"of {spm_vocab_size}. Please provide a correctly configured SentencePiece model."
        )
        self.blank_idx = spm_vocab_size

        self.audio_frontend = audio_resnet()
        self.video_frontend = video_resnet()
        self.fusion = fusion_module()

        frontend_params = [self.video_frontend.parameters(), self.audio_frontend.parameters()]
        fusion_params = [self.fusion.parameters()]

        if args.mode == "online":
            self.model = emformer_rnnt()
        if args.mode == "offline":
            self.model = conformer_rnnt()

        self.loss = torchaudio.transforms.RNNTLoss(reduction="sum")

        self.optimizer = torch.optim.AdamW(
            itertools.chain(*([self.model.parameters()] + frontend_params + fusion_params)),
            lr=8e-4,
            weight_decay=0.06,
            betas=(0.9, 0.98),
        )

    def _step(self, batch, _, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        video_features = self.video_frontend(batch.videos)
        audio_features = self.audio_frontend(batch.audios)
        output, src_lengths, _, _ = self.model(
            self.fusion(torch.cat([video_features, audio_features], dim=-1)),
            batch.video_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)

        return loss

    def configure_optimizers(self):
        self.warmup_lr_scheduler = WarmupCosineScheduler(
            self.optimizer,
            10,
            self.args.epochs,
            len(self.trainer.datamodule.train_dataloader()) / self.trainer.num_devices / self.trainer.num_nodes,
        )
        self.lr_scheduler_interval = "step"
        return (
            [self.optimizer],
            [{"scheduler": self.warmup_lr_scheduler, "interval": self.lr_scheduler_interval}],
        )

Pingchuan Ma's avatar
Pingchuan Ma committed
117
    def forward(self, batch):
Pingchuan Ma's avatar
Pingchuan Ma committed
118
119
120
121
122
123
124
125
126
127
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        video_features = self.video_frontend(batch.videos.to(self.device))
        audio_features = self.audio_frontend(batch.audios.to(self.device))
        hypotheses = decoder(
            self.fusion(torch.cat([video_features, audio_features], dim=-1)),
            batch.video_lengths.to(self.device),
            beam_width=20,
        )
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

Pingchuan Ma's avatar
Pingchuan Ma committed
128
    def training_step(self, batch, batch_idx):
Pingchuan Ma's avatar
Pingchuan Ma committed
129
130
131
132
        loss = self._step(batch, batch_idx, "train")
        batch_size = batch.videos.size(0)
        batch_sizes = self.all_gather(batch_size)
        loss *= batch_sizes.size(0) / batch_sizes.sum()  # world size / batch size
Pingchuan Ma's avatar
Pingchuan Ma committed
133
        self.log("monitoring_step", torch.tensor(self.global_step, dtype=torch.float32))
Pingchuan Ma's avatar
Pingchuan Ma committed
134
135
136
137
138
139
140
141

        return loss

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "test")