audio_resampling_tutorial.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# -*- coding: utf-8 -*-
"""
Audio Resampling
================

Here, we will walk through resampling audio waveforms using ``torchaudio``.

"""

# When running this tutorial in Google Colab, install the required packages
# with the following.
# !pip install torchaudio librosa

import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
# Preparing data and utility functions (skip this section)
# --------------------------------------------------------
#

27
28
29
30
# @title Prepare data and utility functions. {display-mode: "form"}
# @markdown
# @markdown You do not need to look into this cell.
# @markdown Just execute once and you are good to go.
31

32
# -------------------------------------------------------------------------------
33
# Preparation of data and helper functions.
34
# -------------------------------------------------------------------------------
35
36
37
38
39
40
41

import math
import time

import librosa
import matplotlib.pyplot as plt
import pandas as pd
42
from IPython.display import Audio, display
43
44
45
46
47
48


DEFAULT_OFFSET = 201
SWEEP_MAX_SAMPLE_RATE = 48000
DEFAULT_LOWPASS_FILTER_WIDTH = 6
DEFAULT_ROLLOFF = 0.99
49
DEFAULT_RESAMPLING_METHOD = "sinc_interpolation"
50
51
52


def _get_log_freq(sample_rate, max_sweep_rate, offset):
53
    """Get freqs evenly spaced out in log-scale, between [0, max_sweep_rate // 2]
54

55
56
57
58
    offset is used to avoid negative infinity `log(offset + x)`.

    """
    start, stop = math.log(offset), math.log(offset + max_sweep_rate // 2)
59
    return torch.exp(torch.linspace(start, stop, sample_rate, dtype=torch.double)) - offset
60
61
62


def _get_inverse_log_freq(freq, sample_rate, offset):
63
64
65
66
    """Find the time where the given frequency is given by _get_log_freq"""
    half = sample_rate // 2
    return sample_rate * (math.log(1 + freq / offset) / math.log(1 + half / offset))

67
68

def _get_freq_ticks(sample_rate, offset, f_max):
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    # Given the original sample rate used for generating the sweep,
    # find the x-axis value where the log-scale major frequency values fall in
    time, freq = [], []
    for exp in range(2, 5):
        for v in range(1, 10):
            f = v * 10 ** exp
            if f < sample_rate // 2:
                t = _get_inverse_log_freq(f, sample_rate, offset) / sample_rate
                time.append(t)
                freq.append(f)
    t_max = _get_inverse_log_freq(f_max, sample_rate, offset) / sample_rate
    time.append(t_max)
    freq.append(f_max)
    return time, freq

84
85

def get_sine_sweep(sample_rate, offset=DEFAULT_OFFSET):
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    max_sweep_rate = sample_rate
    freq = _get_log_freq(sample_rate, max_sweep_rate, offset)
    delta = 2 * math.pi * freq / sample_rate
    cummulative = torch.cumsum(delta, dim=0)
    signal = torch.sin(cummulative).unsqueeze(dim=0)
    return signal


def plot_sweep(
    waveform,
    sample_rate,
    title,
    max_sweep_rate=SWEEP_MAX_SAMPLE_RATE,
    offset=DEFAULT_OFFSET,
):
    x_ticks = [100, 500, 1000, 5000, 10000, 20000, max_sweep_rate // 2]
    y_ticks = [1000, 5000, 10000, 20000, sample_rate // 2]

    time, freq = _get_freq_ticks(max_sweep_rate, offset, sample_rate // 2)
    freq_x = [f if f in x_ticks and f <= max_sweep_rate // 2 else None for f in freq]
    freq_y = [f for f in freq if f >= 1000 and f in y_ticks and f <= sample_rate // 2]

    figure, axis = plt.subplots(1, 1)
    axis.specgram(waveform[0].numpy(), Fs=sample_rate)
    plt.xticks(time, freq_x)
    plt.yticks(freq_y, freq_y)
    axis.set_xlabel("Original Signal Frequency (Hz, log scale)")
    axis.set_ylabel("Waveform Frequency (Hz)")
    axis.xaxis.grid(True, alpha=0.67)
    axis.yaxis.grid(True, alpha=0.67)
    figure.suptitle(f"{title} (sample rate: {sample_rate} Hz)")
    plt.show(block=True)

119
120

def play_audio(waveform, sample_rate):
121
122
123
124
125
126
127
128
129
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape
    if num_channels == 1:
        display(Audio(waveform[0], rate=sample_rate))
    elif num_channels == 2:
        display(Audio((waveform[0], waveform[1]), rate=sample_rate))
    else:
        raise ValueError("Waveform with more than 2 channels are not supported.")
130
131
132


def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].specgram(waveform[c], Fs=sample_rate)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
        if xlim:
            axes[c].set_xlim(xlim)
    figure.suptitle(title)
    plt.show(block=False)

149
150
151
152
153
154
155
156
157
158
159

def benchmark_resample(
    method,
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=DEFAULT_LOWPASS_FILTER_WIDTH,
    rolloff=DEFAULT_ROLLOFF,
    resampling_method=DEFAULT_RESAMPLING_METHOD,
    beta=None,
    librosa_type=None,
160
    iters=5,
161
):
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    if method == "functional":
        begin = time.time()
        for _ in range(iters):
            F.resample(
                waveform,
                sample_rate,
                resample_rate,
                lowpass_filter_width=lowpass_filter_width,
                rolloff=rolloff,
                resampling_method=resampling_method,
            )
        elapsed = time.time() - begin
        return elapsed / iters
    elif method == "transforms":
        resampler = T.Resample(
            sample_rate,
            resample_rate,
            lowpass_filter_width=lowpass_filter_width,
            rolloff=rolloff,
            resampling_method=resampling_method,
            dtype=waveform.dtype,
        )
        begin = time.time()
        for _ in range(iters):
            resampler(waveform)
        elapsed = time.time() - begin
        return elapsed / iters
    elif method == "librosa":
        waveform_np = waveform.squeeze().numpy()
        begin = time.time()
        for _ in range(iters):
193
            librosa.resample(waveform_np, sample_rate, resample_rate, res_type=librosa_type)
194
195
196
        elapsed = time.time() - begin
        return elapsed / iters

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

######################################################################
# To resample an audio waveform from one freqeuncy to another, you can use
# ``transforms.Resample`` or ``functional.resample``.
# ``transforms.Resample`` precomputes and caches the kernel used for
# resampling, while ``functional.resample`` computes it on the fly, so
# using ``transforms.Resample`` will result in a speedup when resampling
# multiple waveforms using the same parameters (see Benchmarking section).
#
# Both resampling methods use `bandlimited sinc
# interpolation <https://ccrma.stanford.edu/~jos/resample/>`__ to compute
# signal values at arbitrary time steps. The implementation involves
# convolution, so we can take advantage of GPU / multithreading for
# performance improvements. When using resampling in multiple
# subprocesses, such as data loading with multiple worker processes, your
# application might create more threads than your system can handle
# efficiently. Setting ``torch.set_num_threads(1)`` might help in this
# case.
#
# Because a finite number of samples can only represent a finite number of
# frequencies, resampling does not produce perfect results, and a variety
# of parameters can be used to control for its quality and computational
# speed. We demonstrate these properties through resampling a logarithmic
# sine sweep, which is a sine wave that increases exponentially in
# frequency over time.
#
# The spectrograms below show the frequency representation of the signal,
# where the x-axis corresponds to the frequency of the original
# waveform (in log scale), y-axis the frequency of the
# plotted waveform, and color intensity the amplitude.
#

229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
sample_rate = 48000
resample_rate = 32000

waveform = get_sine_sweep(sample_rate)
plot_sweep(waveform, sample_rate, title="Original Waveform")
play_audio(waveform, sample_rate)

resampler = T.Resample(sample_rate, resample_rate, dtype=waveform.dtype)
resampled_waveform = resampler(waveform)
plot_sweep(resampled_waveform, resample_rate, title="Resampled Waveform")
play_audio(waveform, sample_rate)


######################################################################
# Controling resampling quality with parameters
# ---------------------------------------------
#
# Lowpass filter width
# ~~~~~~~~~~~~~~~~~~~~
#
# Because the filter used for interpolation extends infinitely, the
# ``lowpass_filter_width`` parameter is used to control for the width of
# the filter to use to window the interpolation. It is also referred to as
# the number of zero crossings, since the interpolation passes through
# zero at every time unit. Using a larger ``lowpass_filter_width``
# provides a sharper, more precise filter, but is more computationally
# expensive.
#


sample_rate = 48000
resample_rate = 32000

263
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, lowpass_filter_width=6)
264
265
plot_sweep(resampled_waveform, resample_rate, title="lowpass_filter_width=6")

266
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, lowpass_filter_width=128)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
plot_sweep(resampled_waveform, resample_rate, title="lowpass_filter_width=128")


######################################################################
# Rolloff
# ~~~~~~~
#
# The ``rolloff`` parameter is represented as a fraction of the Nyquist
# frequency, which is the maximal frequency representable by a given
# finite sample rate. ``rolloff`` determines the lowpass filter cutoff and
# controls the degree of aliasing, which takes place when frequencies
# higher than the Nyquist are mapped to lower frequencies. A lower rolloff
# will therefore reduce the amount of aliasing, but it will also reduce
# some of the higher frequencies.
#


sample_rate = 48000
resample_rate = 32000

resampled_waveform = F.resample(waveform, sample_rate, resample_rate, rolloff=0.99)
plot_sweep(resampled_waveform, resample_rate, title="rolloff=0.99")

resampled_waveform = F.resample(waveform, sample_rate, resample_rate, rolloff=0.8)
plot_sweep(resampled_waveform, resample_rate, title="rolloff=0.8")


######################################################################
# Window function
# ~~~~~~~~~~~~~~~
#
# By default, ``torchaudio``’s resample uses the Hann window filter, which is
# a weighted cosine function. It additionally supports the Kaiser window,
# which is a near optimal window function that contains an additional
# ``beta`` parameter that allows for the design of the smoothness of the
# filter and width of impulse. This can be controlled using the
# ``resampling_method`` parameter.
#


sample_rate = 48000
resample_rate = 32000

310
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, resampling_method="sinc_interpolation")
311
312
plot_sweep(resampled_waveform, resample_rate, title="Hann Window Default")

313
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, resampling_method="kaiser_window")
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Default")


######################################################################
# Comparison against librosa
# --------------------------
#
# ``torchaudio``’s resample function can be used to produce results similar to
# that of librosa (resampy)’s kaiser window resampling, with some noise
#


sample_rate = 48000
resample_rate = 32000

329
# kaiser_best
330
331
332
333
334
335
336
resampled_waveform = F.resample(
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=64,
    rolloff=0.9475937167399596,
    resampling_method="kaiser_window",
337
    beta=14.769656459379492,
338
339
340
341
)
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Best (torchaudio)")

librosa_resampled_waveform = torch.from_numpy(
342
    librosa.resample(waveform.squeeze().numpy(), sample_rate, resample_rate, res_type="kaiser_best")
343
).unsqueeze(0)
344
plot_sweep(librosa_resampled_waveform, resample_rate, title="Kaiser Window Best (librosa)")
345
346
347
348

mse = torch.square(resampled_waveform - librosa_resampled_waveform).mean().item()
print("torchaudio and librosa kaiser best MSE:", mse)

349
# kaiser_fast
350
351
352
353
354
355
356
resampled_waveform = F.resample(
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=16,
    rolloff=0.85,
    resampling_method="kaiser_window",
357
358
    beta=8.555504641634386,
)
359
plot_specgram(resampled_waveform, resample_rate, title="Kaiser Window Fast (torchaudio)")
360
361

librosa_resampled_waveform = torch.from_numpy(
362
    librosa.resample(waveform.squeeze().numpy(), sample_rate, resample_rate, res_type="kaiser_fast")
363
).unsqueeze(0)
364
plot_sweep(librosa_resampled_waveform, resample_rate, title="Kaiser Window Fast (librosa)")
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

mse = torch.square(resampled_waveform - librosa_resampled_waveform).mean().item()
print("torchaudio and librosa kaiser fast MSE:", mse)


######################################################################
# Performance Benchmarking
# ------------------------
#
# Below are benchmarks for downsampling and upsampling waveforms between
# two pairs of sampling rates. We demonstrate the performance implications
# that the ``lowpass_filter_wdith``, window type, and sample rates can
# have. Additionally, we provide a comparison against ``librosa``\ ’s
# ``kaiser_best`` and ``kaiser_fast`` using their corresponding parameters
# in ``torchaudio``.
#
# To elaborate on the results:
#
# - a larger ``lowpass_filter_width`` results in a larger resampling kernel,
#   and therefore increases computation time for both the kernel computation
#   and convolution
# - using ``kaiser_window`` results in longer computation times than the default
#   ``sinc_interpolation`` because it is more complex to compute the intermediate
#   window values - a large GCD between the sample and resample rate will result
#   in a simplification that allows for a smaller kernel and faster kernel computation.
#


configs = {
    "downsample (48 -> 44.1 kHz)": [48000, 44100],
    "downsample (16 -> 8 kHz)": [16000, 8000],
    "upsample (44.1 -> 48 kHz)": [44100, 48000],
    "upsample (8 -> 16 kHz)": [8000, 16000],
}

for label in configs:
401
402
403
404
405
406
    times, rows = [], []
    sample_rate = configs[label][0]
    resample_rate = configs[label][1]
    waveform = get_sine_sweep(sample_rate)

    # sinc 64 zero-crossings
407
408
    f_time = benchmark_resample("functional", waveform, sample_rate, resample_rate, lowpass_filter_width=64)
    t_time = benchmark_resample("transforms", waveform, sample_rate, resample_rate, lowpass_filter_width=64)
409
410
411
412
    times.append([None, 1000 * f_time, 1000 * t_time])
    rows.append("sinc (width 64)")

    # sinc 6 zero-crossings
413
414
    f_time = benchmark_resample("functional", waveform, sample_rate, resample_rate, lowpass_filter_width=16)
    t_time = benchmark_resample("transforms", waveform, sample_rate, resample_rate, lowpass_filter_width=16)
415
416
417
418
    times.append([None, 1000 * f_time, 1000 * t_time])
    rows.append("sinc (width 16)")

    # kaiser best
419
    lib_time = benchmark_resample("librosa", waveform, sample_rate, resample_rate, librosa_type="kaiser_best")
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    f_time = benchmark_resample(
        "functional",
        waveform,
        sample_rate,
        resample_rate,
        lowpass_filter_width=64,
        rolloff=0.9475937167399596,
        resampling_method="kaiser_window",
        beta=14.769656459379492,
    )
    t_time = benchmark_resample(
        "transforms",
        waveform,
        sample_rate,
        resample_rate,
        lowpass_filter_width=64,
        rolloff=0.9475937167399596,
        resampling_method="kaiser_window",
        beta=14.769656459379492,
    )
    times.append([1000 * lib_time, 1000 * f_time, 1000 * t_time])
    rows.append("kaiser_best")

    # kaiser fast
444
    lib_time = benchmark_resample("librosa", waveform, sample_rate, resample_rate, librosa_type="kaiser_fast")
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    f_time = benchmark_resample(
        "functional",
        waveform,
        sample_rate,
        resample_rate,
        lowpass_filter_width=16,
        rolloff=0.85,
        resampling_method="kaiser_window",
        beta=8.555504641634386,
    )
    t_time = benchmark_resample(
        "transforms",
        waveform,
        sample_rate,
        resample_rate,
        lowpass_filter_width=16,
        rolloff=0.85,
        resampling_method="kaiser_window",
        beta=8.555504641634386,
    )
    times.append([1000 * lib_time, 1000 * f_time, 1000 * t_time])
    rows.append("kaiser_fast")

468
    df = pd.DataFrame(times, columns=["librosa", "functional", "transforms"], index=rows)
469
470
    df.columns = pd.MultiIndex.from_product([[f"{label} time (ms)"], df.columns])
    display(df.round(2))