train.py 10.3 KB
Newer Older
1
2
3
#!/usr/bin/env python3
"""Train Conv-TasNet"""
import argparse
4
5
import pathlib
import time
6

7
import conv_tasnet
8
9
10
11
12
13
14
15
16
17
import torch
import torchaudio
import torchaudio.models
from utils import dist_utils
from utils.dataset import utils as dataset_utils

_LG = dist_utils.getLogger(__name__)


def _parse_args(args):
18
19
20
    parser = argparse.ArgumentParser(
        description=__doc__,
    )
21
    parser.add_argument(
22
        "--debug", action="store_true", help="Enable debug behavior. Each epoch will end with just one batch."
23
    )
24
25
    group = parser.add_argument_group("Model Options")
    group.add_argument("--num-speakers", required=True, type=int, help="The number of speakers.")
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    group = parser.add_argument_group("Dataset Options")
    group.add_argument(
        "--sample-rate",
        required=True,
        type=int,
        help="Sample rate of audio files in the given dataset.",
    )
    group.add_argument(
        "--dataset",
        default="wsj0mix",
        choices=["wsj0mix"],
        help='Dataset type. (default: "wsj0mix")',
    )
    group.add_argument(
        "--dataset-dir",
        required=True,
        type=pathlib.Path,
        help=(
            "Directory where dataset is found. "
            'If the dataset type is "wsj9mix", then this is the directory where '
            '"cv", "tt" and "tr" subdirectories are found.'
        ),
    )
    group = parser.add_argument_group("Save Options")
    group.add_argument(
        "--save-dir",
        required=True,
        type=pathlib.Path,
        help=(
            "Directory where the checkpoints and logs are saved. "
            "Though, only the worker 0 saves checkpoint data, "
            "all the worker processes must have access to the directory."
        ),
    )
    group = parser.add_argument_group("Dataloader Options")
    group.add_argument(
        "--batch-size",
        type=int,
64
        help="Batch size. (default: 16 // world_size)",
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    )
    group = parser.add_argument_group("Training Options")
    group.add_argument(
        "--epochs",
        metavar="NUM_EPOCHS",
        default=100,
        type=int,
        help="The number of epochs to train. (default: 100)",
    )
    group.add_argument(
        "--learning-rate",
        default=1e-3,
        type=float,
        help="Initial learning rate. (default: 1e-3)",
    )
    group.add_argument(
        "--grad-clip",
        metavar="CLIP_VALUE",
        default=5.0,
        type=float,
        help="Gradient clip value (l2 norm). (default: 5.0)",
    )
    group.add_argument(
        "--resume",
        metavar="CHECKPOINT_PATH",
        help="Previous checkpoint file from which the training is resumed.",
    )

    args = parser.parse_args(args)

    # Delaing the default value initialization until parse_args is done because
    # if `--help` is given, distributed training is not enabled.
    if args.batch_size is None:
        args.batch_size = 16 // torch.distributed.get_world_size()

    return args


def _get_model(
    num_sources,
    enc_kernel_size=16,
    enc_num_feats=512,
    msk_kernel_size=3,
    msk_num_feats=128,
    msk_num_hidden_feats=512,
    msk_num_layers=8,
    msk_num_stacks=3,
):
    model = torchaudio.models.ConvTasNet(
        num_sources=num_sources,
        enc_kernel_size=enc_kernel_size,
        enc_num_feats=enc_num_feats,
        msk_kernel_size=msk_kernel_size,
        msk_num_feats=msk_num_feats,
        msk_num_hidden_feats=msk_num_hidden_feats,
        msk_num_layers=msk_num_layers,
        msk_num_stacks=msk_num_stacks,
    )
    _LG.info_on_master("Model Configuration:")
    _LG.info_on_master(" - N: %d", enc_num_feats)
    _LG.info_on_master(" - L: %d", enc_kernel_size)
    _LG.info_on_master(" - B: %d", msk_num_feats)
    _LG.info_on_master(" - H: %d", msk_num_hidden_feats)
    _LG.info_on_master(" - Sc: %d", msk_num_feats)
    _LG.info_on_master(" - P: %d", msk_kernel_size)
    _LG.info_on_master(" - X: %d", msk_num_layers)
    _LG.info_on_master(" - R: %d", msk_num_stacks)
    _LG.info_on_master(
133
134
        " - Receptive Field: %s [samples]",
        model.mask_generator.receptive_field,
135
136
137
138
    )
    return model


139
def _get_dataloader(dataset_type, dataset_dir, num_speakers, sample_rate, batch_size, task=None):
140
    train_dataset, valid_dataset, eval_dataset = dataset_utils.get_dataset(
141
        dataset_type, dataset_dir, num_speakers, sample_rate, task
142
    )
143
    train_collate_fn = dataset_utils.get_collate_fn(dataset_type, mode="train", sample_rate=sample_rate, duration=4)
144

145
    test_collate_fn = dataset_utils.get_collate_fn(dataset_type, mode="test")
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        sampler=torch.utils.data.distributed.DistributedSampler(train_dataset),
        collate_fn=train_collate_fn,
        pin_memory=True,
    )
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=batch_size,
        sampler=torch.utils.data.distributed.DistributedSampler(valid_dataset),
        collate_fn=test_collate_fn,
        pin_memory=True,
    )
    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=batch_size,
        sampler=torch.utils.data.distributed.DistributedSampler(eval_dataset),
        collate_fn=test_collate_fn,
        pin_memory=True,
    )
    return train_loader, valid_loader, eval_loader


def _write_header(log_path, args):
    rows = [
173
174
175
176
177
178
        [
            f"# torch: {torch.__version__}",
        ],
        [
            f"# torchaudio: {torchaudio.__version__}",
        ],
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    ]
    rows.append(["# arguments"])
    for key, item in vars(args).items():
        rows.append([f"#   {key}: {item}"])

    dist_utils.write_csv_on_master(log_path, *rows)


def train(args):
    args = _parse_args(args)
    _LG.info("%s", args)

    args.save_dir.mkdir(parents=True, exist_ok=True)
    if "sox_io" in torchaudio.list_audio_backends():
        torchaudio.set_audio_backend("sox_io")

    start_epoch = 1
    if args.resume:
        checkpoint = torch.load(args.resume)
        if args.sample_rate != checkpoint["sample_rate"]:
            raise ValueError(
                "The provided sample rate ({args.sample_rate}) does not match "
                "the sample rate from the check point ({checkpoint['sample_rate']})."
            )
        if args.num_speakers != checkpoint["num_speakers"]:
            raise ValueError(
                "The provided #of speakers ({args.num_speakers}) does not match "
                "the #of speakers from the check point ({checkpoint['num_speakers']}.)"
            )
        start_epoch = checkpoint["epoch"]

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    _LG.info("Using: %s", device)

    model = _get_model(num_sources=args.num_speakers)
    model.to(device)

216
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device] if torch.cuda.is_available() else None)
217
218
219
220
221
222
223
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

    if args.resume:
        _LG.info("Loading parameters from the checkpoint...")
        model.module.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
    else:
224
        dist_utils.synchronize_params(str(args.save_dir / "tmp.pt"), device, model, optimizer)
225

226
    lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=0.5, patience=3)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    train_loader, valid_loader, eval_loader = _get_dataloader(
        args.dataset,
        args.dataset_dir,
        args.num_speakers,
        args.sample_rate,
        args.batch_size,
    )

    num_train_samples = len(train_loader.dataset)
    num_valid_samples = len(valid_loader.dataset)
    num_eval_samples = len(eval_loader.dataset)

    _LG.info_on_master("Datasets:")
    _LG.info_on_master(" - Train: %s", num_train_samples)
    _LG.info_on_master(" - Valid: %s", num_valid_samples)
    _LG.info_on_master(" -  Eval: %s", num_eval_samples)

    trainer = conv_tasnet.trainer.Trainer(
        model,
        optimizer,
        train_loader,
        valid_loader,
        eval_loader,
        args.grad_clip,
        device,
        debug=args.debug,
    )

256
    log_path = args.save_dir / "log.csv"
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    _write_header(log_path, args)
    dist_utils.write_csv_on_master(
        log_path,
        [
            "epoch",
            "learning_rate",
            "valid_si_snri",
            "valid_sdri",
            "eval_si_snri",
            "eval_sdri",
        ],
    )

    _LG.info_on_master("Running %s epochs", args.epochs)
    for epoch in range(start_epoch, start_epoch + args.epochs):
        _LG.info_on_master("=" * 70)
        _LG.info_on_master("Epoch: %s", epoch)
        _LG.info_on_master("Learning rate: %s", optimizer.param_groups[0]["lr"])
        _LG.info_on_master("=" * 70)

        t0 = time.monotonic()
        trainer.train_one_epoch()
        train_sps = num_train_samples / (time.monotonic() - t0)

        _LG.info_on_master("-" * 70)

        t0 = time.monotonic()
        valid_metric = trainer.validate()
        valid_sps = num_valid_samples / (time.monotonic() - t0)
        _LG.info_on_master("Valid: %s", valid_metric)

        _LG.info_on_master("-" * 70)

        t0 = time.monotonic()
        eval_metric = trainer.evaluate()
        eval_sps = num_eval_samples / (time.monotonic() - t0)
        _LG.info_on_master(" Eval: %s", eval_metric)

        _LG.info_on_master("-" * 70)

        _LG.info_on_master("Train: Speed: %6.2f [samples/sec]", train_sps)
        _LG.info_on_master("Valid: Speed: %6.2f [samples/sec]", valid_sps)
        _LG.info_on_master(" Eval: Speed: %6.2f [samples/sec]", eval_sps)

        _LG.info_on_master("-" * 70)

        dist_utils.write_csv_on_master(
            log_path,
            [
                epoch,
                optimizer.param_groups[0]["lr"],
                valid_metric.si_snri,
                valid_metric.sdri,
                eval_metric.si_snri,
                eval_metric.sdri,
            ],
        )

        lr_scheduler.step(valid_metric.si_snri)

        save_path = args.save_dir / f"epoch_{epoch}.pt"
        dist_utils.save_on_master(
            save_path,
            {
                "model": model.module.state_dict(),
                "optimizer": optimizer.state_dict(),
                "num_speakers": args.num_speakers,
                "sample_rate": args.sample_rate,
                "epoch": epoch,
            },
        )