librosa_compatibility_test.py 14.9 KB
Newer Older
1
"""Test suites for numerical compatibility with librosa"""
2
import os
3
import unittest
4
from distutils.version import StrictVersion
5
6

import torch
7
import torchaudio
8
import torchaudio.functional as F
9
from torchaudio._internal.module_utils import is_module_available
10
11
from parameterized import parameterized
import itertools
12

13
LIBROSA_AVAILABLE = is_module_available('librosa')
moto's avatar
moto committed
14
15

if LIBROSA_AVAILABLE:
16
17
    import numpy as np
    import librosa
18
    import scipy
19

20
from torchaudio_unittest import common_utils
21

22

moto's avatar
moto committed
23
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
moto's avatar
moto committed
24
class TestFunctional(common_utils.TorchaudioTestCase):
25
26
    """Test suite for functions in `functional` module."""
    def test_griffinlim(self):
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        # NOTE: This test is flaky without a fixed random seed
        # See https://github.com/pytorch/audio/issues/382
        torch.random.manual_seed(42)
        tensor = torch.rand((1, 1000))

        n_fft = 400
        ws = 400
        hop = 100
        window = torch.hann_window(ws)
        normalize = False
        momentum = 0.99
        n_iter = 8
        length = 1000
        rand_init = False
        init = 'random' if rand_init else None

        specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt()
        ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1, normalize,
                              n_iter, momentum, length, rand_init)
        lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop,
                                    momentum=momentum, init=init, length=length)
        lr_out = torch.from_numpy(lr_out).unsqueeze(0)

50
        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
51

Vincent QB's avatar
Vincent QB committed
52
    def _test_create_fb(self, n_mels=40, sample_rate=22050, n_fft=2048, fmin=0.0, fmax=8000.0, norm=None):
53
54
55
56
57
58
        librosa_fb = librosa.filters.mel(sr=sample_rate,
                                         n_fft=n_fft,
                                         n_mels=n_mels,
                                         fmax=fmax,
                                         fmin=fmin,
                                         htk=True,
Vincent QB's avatar
Vincent QB committed
59
                                         norm=norm)
60
61
62
63
        fb = F.create_fb_matrix(sample_rate=sample_rate,
                                n_mels=n_mels,
                                f_max=fmax,
                                f_min=fmin,
Vincent QB's avatar
Vincent QB committed
64
65
                                n_freqs=(n_fft // 2 + 1),
                                norm=norm)
66
67

        for i_mel_bank in range(n_mels):
68
69
            self.assertEqual(
                fb[:, i_mel_bank], torch.tensor(librosa_fb[i_mel_bank]), atol=1e-4, rtol=1e-5)
70
71
72
73
74
75
76
77
78

    def test_create_fb(self):
        self._test_create_fb()
        self._test_create_fb(n_mels=128, sample_rate=44100)
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0)
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0)
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0)
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0)
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0)
79
80
        if StrictVersion(librosa.__version__) < StrictVersion("0.7.2"):
            return
Vincent QB's avatar
Vincent QB committed
81
82
83
84
85
86
        self._test_create_fb(n_mels=128, sample_rate=44100, norm="slaney")
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0, norm="slaney")
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0, norm="slaney")
87
88
89
90
91
92
93
94
95
96
97
98
99

    def test_amplitude_to_DB(self):
        spec = torch.rand((6, 201))

        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

        # Power to DB
        multiplier = 10.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        lr_out = librosa.core.power_to_db(spec.numpy())
100
        lr_out = torch.from_numpy(lr_out)
101

102
        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
103
104
105
106
107
108

        # Amplitude to DB
        multiplier = 20.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        lr_out = librosa.core.amplitude_to_db(spec.numpy())
109
        lr_out = torch.from_numpy(lr_out)
110

111
        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
112
113


moto's avatar
moto committed
114
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
class TestPhaseVocoder(common_utils.TorchaudioTestCase):
    @parameterized.expand(list(itertools.product(
        [(2, 1025, 400, 2)],
        [0.5, 1.01, 1.3],
        [256]
    )))
    def test_phase_vocoder(self, shape, rate, hop_length):
        # Due to cummulative sum, numerical error in using torch.float32 will
        # result in bottom right values of the stretched sectrogram to not
        # match with librosa.
        torch.random.manual_seed(42)
        complex_specgrams = torch.randn(*shape)
        complex_specgrams = complex_specgrams.type(torch.float64)
        phase_advance = torch.linspace(
            0,
            np.pi * hop_length,
            complex_specgrams.shape[-3],
            dtype=torch.float64)[..., None]

        complex_specgrams_stretch = F.phase_vocoder(complex_specgrams, rate=rate, phase_advance=phase_advance)

        # == Test shape
        expected_size = list(complex_specgrams.size())
        expected_size[-2] = int(np.ceil(expected_size[-2] / rate))

        assert complex_specgrams.dim() == complex_specgrams_stretch.dim()
        assert complex_specgrams_stretch.size() == torch.Size(expected_size)

        # == Test values
        index = [0] * (complex_specgrams.dim() - 3) + [slice(None)] * 3
        mono_complex_specgram = complex_specgrams[index].numpy()
        mono_complex_specgram = mono_complex_specgram[..., 0] + \
            mono_complex_specgram[..., 1] * 1j
        expected_complex_stretch = librosa.phase_vocoder(
            mono_complex_specgram,
            rate=rate,
            hop_length=hop_length)

        complex_stretch = complex_specgrams_stretch[index].numpy()
        complex_stretch = complex_stretch[..., 0] + 1j * complex_stretch[..., 1]

        self.assertEqual(complex_stretch, torch.from_numpy(expected_complex_stretch), atol=1e-5, rtol=1e-5)
157
158
159


def _load_audio_asset(*asset_paths, **kwargs):
160
    file_path = common_utils.get_asset_path(*asset_paths)
161
162
163
164
    sound, sample_rate = torchaudio.load(file_path, **kwargs)
    return sound, sample_rate


moto's avatar
moto committed
165
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
moto's avatar
moto committed
166
class TestTransforms(common_utils.TorchaudioTestCase):
167
    """Test suite for functions in `transforms` module."""
168
    def assert_compatibilities(self, n_fft, hop_length, power, n_mels, n_mfcc, sample_rate):
moto's avatar
moto committed
169
        common_utils.set_audio_backend('default')
170
171
        path = common_utils.get_asset_path('sinewave.wav')
        sound, sample_rate = common_utils.load_wav(path)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        sound_librosa = sound.cpu().numpy().squeeze()  # (64000)

        # test core spectrogram
        spect_transform = torchaudio.transforms.Spectrogram(
            n_fft=n_fft, hop_length=hop_length, power=power)
        out_librosa, _ = librosa.core.spectrum._spectrogram(
            y=sound_librosa, n_fft=n_fft, hop_length=hop_length, power=power)

        out_torch = spect_transform(sound).squeeze().cpu()
        self.assertEqual(out_torch, torch.from_numpy(out_librosa), atol=1e-5, rtol=1e-5)

        # test mel spectrogram
        melspect_transform = torchaudio.transforms.MelSpectrogram(
            sample_rate=sample_rate, window_fn=torch.hann_window,
            hop_length=hop_length, n_mels=n_mels, n_fft=n_fft)
        librosa_mel = librosa.feature.melspectrogram(
            y=sound_librosa, sr=sample_rate, n_fft=n_fft,
            hop_length=hop_length, n_mels=n_mels, htk=True, norm=None)
        librosa_mel_tensor = torch.from_numpy(librosa_mel)
        torch_mel = melspect_transform(sound).squeeze().cpu()
        self.assertEqual(
            torch_mel.type(librosa_mel_tensor.dtype), librosa_mel_tensor, atol=5e-3, rtol=1e-5)

        # test s2db
        power_to_db_transform = torchaudio.transforms.AmplitudeToDB('power', 80.)
        power_to_db_torch = power_to_db_transform(spect_transform(sound)).squeeze().cpu()
        power_to_db_librosa = librosa.core.spectrum.power_to_db(out_librosa)
        self.assertEqual(power_to_db_torch, torch.from_numpy(power_to_db_librosa), atol=5e-3, rtol=1e-5)

        mag_to_db_transform = torchaudio.transforms.AmplitudeToDB('magnitude', 80.)
        mag_to_db_torch = mag_to_db_transform(torch.abs(sound)).squeeze().cpu()
        mag_to_db_librosa = librosa.core.spectrum.amplitude_to_db(sound_librosa)
        self.assertEqual(mag_to_db_torch, torch.from_numpy(mag_to_db_librosa), atol=5e-3, rtol=1e-5)

        power_to_db_torch = power_to_db_transform(melspect_transform(sound)).squeeze().cpu()
        db_librosa = librosa.core.spectrum.power_to_db(librosa_mel)
        db_librosa_tensor = torch.from_numpy(db_librosa)
        self.assertEqual(
            power_to_db_torch.type(db_librosa_tensor.dtype), db_librosa_tensor, atol=5e-3, rtol=1e-5)

        # test MFCC
        melkwargs = {'hop_length': hop_length, 'n_fft': n_fft}
        mfcc_transform = torchaudio.transforms.MFCC(
            sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho', melkwargs=melkwargs)

        # librosa.feature.mfcc doesn't pass kwargs properly since some of the
        # kwargs for melspectrogram and mfcc are the same. We just follow the
        # function body in
        # https://librosa.github.io/librosa/_modules/librosa/feature/spectral.html#melspectrogram
        # to mirror this function call with correct args:
        #
        # librosa_mfcc = librosa.feature.mfcc(
        #     y=sound_librosa, sr=sample_rate, n_mfcc = n_mfcc,
        #     hop_length=hop_length, n_fft=n_fft, htk=True, norm=None, n_mels=n_mels)

        librosa_mfcc = scipy.fftpack.dct(db_librosa, axis=0, type=2, norm='ortho')[:n_mfcc]
        librosa_mfcc_tensor = torch.from_numpy(librosa_mfcc)
        torch_mfcc = mfcc_transform(sound).squeeze().cpu()

        self.assertEqual(
            torch_mfcc.type(librosa_mfcc_tensor.dtype), librosa_mfcc_tensor, atol=5e-3, rtol=1e-5)

234
235
236
237
238
239
240
241
242
    def test_basics1(self):
        kwargs = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }
243
        self.assert_compatibilities(**kwargs)
244
245
246
247
248
249
250
251
252
253

    def test_basics2(self):
        kwargs = {
            'n_fft': 600,
            'hop_length': 100,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 20,
            'sample_rate': 16000
        }
254
        self.assert_compatibilities(**kwargs)
255

moto's avatar
moto committed
256
257
    # NOTE: Test passes offline, but fails on TravisCI (and CircleCI), see #372.
    @unittest.skipIf('CI' in os.environ, 'Test is known to fail on CI')
258
259
260
261
262
263
264
265
266
    def test_basics3(self):
        kwargs = {
            'n_fft': 200,
            'hop_length': 50,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 50,
            'sample_rate': 24000
        }
267
        self.assert_compatibilities(**kwargs)
268
269
270
271
272
273
274
275
276
277

    def test_basics4(self):
        kwargs = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 3.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }
278
        self.assert_compatibilities(**kwargs)
279
280
281
282
283
284

    def test_MelScale(self):
        """MelScale transform is comparable to that of librosa"""
        n_fft = 2048
        n_mels = 256
        hop_length = n_fft // 4
moto's avatar
moto committed
285
286
        sample_rate = 44100
        sound = common_utils.get_whitenoise(sample_rate=sample_rate, duration=60)
287
288
289
290
291
292
293
294
295
296
297
        sound = sound.mean(dim=0, keepdim=True)
        spec_ta = F.spectrogram(
            sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
            hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
        spec_lr = spec_ta.cpu().numpy().squeeze()
        # Perform MelScale with torchaudio and librosa
        melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_ta)
        melspec_lr = librosa.feature.melspectrogram(
            S=spec_lr, sr=sample_rate, n_fft=n_fft, hop_length=hop_length,
            win_length=n_fft, center=True, window='hann', n_mels=n_mels, htk=True, norm=None)
        # Note: Using relaxed rtol instead of atol
298
        self.assertEqual(melspec_ta, torch.from_numpy(melspec_lr[None, ...]), atol=1e-8, rtol=1e-3)
299
300
301
302
303
304
305
306
307

    def test_InverseMelScale(self):
        """InverseMelScale transform is comparable to that of librosa"""
        n_fft = 2048
        n_mels = 256
        n_stft = n_fft // 2 + 1
        hop_length = n_fft // 4

        # Prepare mel spectrogram input. We use torchaudio to compute one.
308
309
310
        path = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
        sound, sample_rate = common_utils.load_wav(path)
        sound = sound[:, 2**10:2**10 + 2**14]
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        sound = sound.mean(dim=0, keepdim=True)
        spec_orig = F.spectrogram(
            sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
            hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
        melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_orig)
        melspec_lr = melspec_ta.cpu().numpy().squeeze()
        # Perform InverseMelScale with torch audio and librosa
        spec_ta = torchaudio.transforms.InverseMelScale(
            n_stft, n_mels=n_mels, sample_rate=sample_rate)(melspec_ta)
        spec_lr = librosa.feature.inverse.mel_to_stft(
            melspec_lr, sr=sample_rate, n_fft=n_fft, power=2.0, htk=True, norm=None)
        spec_lr = torch.from_numpy(spec_lr[None, ...])

        # Align dimensions
        # librosa does not return power spectrogram while torchaudio returns power spectrogram
        spec_orig = spec_orig.sqrt()
        spec_ta = spec_ta.sqrt()

        threshold = 2.0
        # This threshold was choosen empirically, based on the following observation
        #
        # torch.dist(spec_lr, spec_ta, p=float('inf'))
        # >>> tensor(1.9666)
        #
        # The spectrograms reconstructed by librosa and torchaudio are not comparable elementwise.
        # This is because they use different approximation algorithms and resulting values can live
        # in different magnitude. (although most of them are very close)
        # See
        # https://github.com/pytorch/audio/pull/366 for the discussion of the choice of algorithm
        # https://github.com/pytorch/audio/pull/448/files#r385747021 for the distribution of P-inf
        # distance over frequencies.
342
        self.assertEqual(spec_ta, spec_lr, atol=threshold, rtol=1e-5)
343
344
345
346
347
348
349
350
351
352
353

        threshold = 1700.0
        # This threshold was choosen empirically, based on the following observations
        #
        # torch.dist(spec_orig, spec_ta, p=1)
        # >>> tensor(1644.3516)
        # torch.dist(spec_orig, spec_lr, p=1)
        # >>> tensor(1420.7103)
        # torch.dist(spec_lr, spec_ta, p=1)
        # >>> tensor(943.2759)
        assert torch.dist(spec_orig, spec_ta, p=1) < threshold