lightning.py 4.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from typing import Tuple

import torch
import torchaudio
from dataset import (
    BucketizeBatchSampler,
    CollateFnHubert,
    DistributedBatchSampler,
    HuBERTDataSet,
)
from loss import hubert_loss
from pytorch_lightning import LightningModule
from torch import Tensor
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader


Batch = Tuple[Tensor, Tensor, Tensor]


class LinearDecayLRScheduler(torch.optim.lr_scheduler._LRScheduler):
    """Linear learning rate scheduler with warm up."""

    def __init__(
        self,
        optimizer: Optimizer,
        warmup_updates: int,
        max_updates: int,
        last_epoch: int = -1,
        verbose: bool = False,
    ):
        self.warmup_updates = warmup_updates
        self.max_updates = max_updates
        super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)

    def get_lr(self):
        if self._step_count <= self.warmup_updates:
            return [self._step_count / self.warmup_updates * base_lr for base_lr in self.base_lrs]
        elif self._step_count >= self.max_updates:
            return [0.0 for _ in self.base_lrs]
        else:
            pct_remaining = (self.max_updates - self._step_count) / (self.max_updates - self.warmup_updates)
            return [base_lr * pct_remaining for base_lr in self.base_lrs]


class HuBERTPreTrainModule(LightningModule):
    def __init__(
        self,
        *,
        model_name: str,
        feature_grad_mult: float,
        num_classes: int,
        dataset: str,
        root_path: str,
        feature_type: str,
        seconds_per_batch: float,
        learning_rate: float,
        betas: Tuple[float, float],
        eps: float,
        weight_decay: float,
        warmup_updates: int,
        max_updates: int,
    ):
        super().__init__()

        if model_name == "hubert_pretrain_base":
            self.model = torchaudio.models.hubert_pretrain_base(
                feature_grad_mult=feature_grad_mult, num_classes=num_classes
            )
        elif model_name == "hubert_pretrain_large":
            self.model = torchaudio.models.hubert_pretrain_large()
        elif model_name == "hubert_pretrain_xlarge":
            self.model = torchaudio.models.hubert_pretrain_xlarge()
        else:
            raise ValueError(f"Unsupported model name: {model_name}")

        self.loss = hubert_loss
nateanl's avatar
nateanl committed
78
        self.optimizer = torch.optim.AdamW(
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
            self.model.parameters(), lr=learning_rate, betas=betas, eps=eps, weight_decay=weight_decay
        )
        self.lr_scheduler = LinearDecayLRScheduler(self.optimizer, warmup_updates, max_updates)
        self.dataset = dataset
        self.root_path = root_path
        self.feature_type = feature_type
        self.seconds_per_batch = seconds_per_batch

    def _step(self, batch: Batch, batch_idx, step_type):
        if batch is None:
            return None
        waveforms, labels, audio_lengths = batch
        logit_m, logit_u, feature_penalty = self.model(
            waveforms,
            labels,
            audio_lengths,
        )
        loss = self.loss(logit_m, logit_u, feature_penalty)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [
                {
                    "scheduler": self.lr_scheduler,
                    "interval": "step",
                },
            ],
        )

    def training_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def train_dataloader(self):
        dataset = HuBERTDataSet(self.root_path, self.dataset, "train")
        sampler = BucketizeBatchSampler(
            dataset.len_list,
            num_buckets=10000,
            max_token_count=self.seconds_per_batch * 16000,
            min_len=32000,
            max_len=250000,
            shuffle=True,
        )
        sampler = DistributedBatchSampler(sampler, shuffle=True)
        sampler.set_epoch(self.current_epoch)
        dataloader = DataLoader(
            dataset,
            batch_sampler=sampler,
            collate_fn=CollateFnHubert(feature_type=self.feature_type, pad=False, rand_crop=True),
            num_workers=10,
        )
        return dataloader

    def val_dataloader(self):
        dataset = HuBERTDataSet(self.root_path, self.dataset, "valid")
        sampler = BucketizeBatchSampler(
            dataset.len_list,
            num_buckets=1000,
            max_token_count=self.seconds_per_batch * 16000,
            min_len=32000,
            max_len=250000,
            shuffle=False,
        )
        dataloader = DataLoader(
            dataset,
            batch_sampler=sampler,
            collate_fn=CollateFnHubert(feature_type=self.feature_type, pad=False, rand_crop=True),
            num_workers=10,
        )
        return dataloader