test_torchscript_consistency.py 7.77 KB
Newer Older
1
2
3
4
5
6
7
"""Test suites for jit-ability and its numerical compatibility"""
import os
import unittest

import torch
import torchaudio
import torchaudio.functional as F
8
import torchaudio.transforms
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

import common_utils


def _test_torchscript_functional_shape(py_method, *args, **kwargs):
    jit_method = torch.jit.script(py_method)

    jit_out = jit_method(*args, **kwargs)
    py_out = py_method(*args, **kwargs)

    assert jit_out.shape == py_out.shape
    return jit_out, py_out


def _test_torchscript_functional(py_method, *args, **kwargs):
    jit_out, py_out = _test_torchscript_functional_shape(py_method, *args, **kwargs)
    assert torch.allclose(jit_out, py_out)


class TestFunctional(unittest.TestCase):
    """Test functions in `functional` module."""
    def test_spectrogram(self):
        tensor = torch.rand((1, 1000))
        n_fft = 400
        ws = 400
        hop = 200
        pad = 0
        window = torch.hann_window(ws)
        power = 2
        normalize = False

        _test_torchscript_functional(
            F.spectrogram, tensor, pad, window, n_fft, hop, ws, power, normalize
        )

    def test_griffinlim(self):
        tensor = torch.rand((1, 201, 6))
        n_fft = 400
        ws = 400
        hop = 200
        window = torch.hann_window(ws)
        power = 2
        normalize = False
        momentum = 0.99
        n_iter = 32
        length = 1000

        _test_torchscript_functional(
            F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0
        )

    def test_compute_deltas(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)

        _test_torchscript_functional(F.compute_deltas, specgram, win_length=win_length)

    def test_detect_pitch_frequency(self):
        filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.mp3')
        waveform, sample_rate = torchaudio.load(filepath)
        _test_torchscript_functional(F.detect_pitch_frequency, waveform, sample_rate)

    def test_create_fb_matrix(self):
        n_stft = 100
        f_min = 0.0
        f_max = 20.0
        n_mels = 10
        sample_rate = 16000

        _test_torchscript_functional(F.create_fb_matrix, n_stft, f_min, f_max, n_mels, sample_rate)

    def test_amplitude_to_DB(self):
        spec = torch.rand((6, 201))
        multiplier = 10.0
        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

        _test_torchscript_functional(F.amplitude_to_DB, spec, multiplier, amin, db_multiplier, top_db)

    def test_DB_to_amplitude(self):
        x = torch.rand((1, 100))
        ref = 1.
        power = 1.

        _test_torchscript_functional(F.DB_to_amplitude, x, ref, power)

    def test_create_dct(self):
        n_mfcc = 40
        n_mels = 128
        norm = "ortho"

        _test_torchscript_functional(F.create_dct, n_mfcc, n_mels, norm)

    def test_mu_law_encoding(self):
        tensor = torch.rand((1, 10))
        qc = 256

        _test_torchscript_functional(F.mu_law_encoding, tensor, qc)

    def test_mu_law_decoding(self):
        tensor = torch.rand((1, 10))
        qc = 256

        _test_torchscript_functional(F.mu_law_decoding, tensor, qc)

    def test_complex_norm(self):
        complex_tensor = torch.randn(1, 2, 1025, 400, 2)
        power = 2

        _test_torchscript_functional(F.complex_norm, complex_tensor, power)

    def test_mask_along_axis(self):
        specgram = torch.randn(2, 1025, 400)
        mask_param = 100
        mask_value = 30.
        axis = 2

        _test_torchscript_functional(F.mask_along_axis, specgram, mask_param, mask_value, axis)

    def test_mask_along_axis_iid(self):
        specgrams = torch.randn(4, 2, 1025, 400)
        mask_param = 100
        mask_value = 30.
        axis = 2

        _test_torchscript_functional(F.mask_along_axis_iid, specgrams, mask_param, mask_value, axis)

    def test_gain(self):
        tensor = torch.rand((1, 1000))
        gainDB = 2.0

        _test_torchscript_functional(F.gain, tensor, gainDB)

    def test_dither(self):
        tensor = torch.rand((2, 1000))

        _test_torchscript_functional_shape(F.dither, tensor)
        _test_torchscript_functional_shape(F.dither, tensor, "RPDF")
        _test_torchscript_functional_shape(F.dither, tensor, "GPDF")
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258


RUN_CUDA = torch.cuda.is_available()
print("Run test with cuda:", RUN_CUDA)


def _test_script_module(f, tensor, *args, **kwargs):

    py_method = f(*args, **kwargs)
    jit_method = torch.jit.script(py_method)

    py_out = py_method(tensor)
    jit_out = jit_method(tensor)

    assert torch.allclose(jit_out, py_out)

    if RUN_CUDA:

        tensor = tensor.to("cuda")

        py_method = py_method.cuda()
        jit_method = torch.jit.script(py_method)

        py_out = py_method(tensor)
        jit_out = jit_method(tensor)

        assert torch.allclose(jit_out, py_out)


class TestTransforms(unittest.TestCase):
    def test_Spectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(torchaudio.transforms.Spectrogram, tensor)

    def test_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
        _test_script_module(torchaudio.transforms.GriffinLim, tensor, length=1000, rand_init=False)

    def test_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
        _test_script_module(torchaudio.transforms.AmplitudeToDB, spec)

    def test_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
        _test_script_module(torchaudio.transforms.MelScale, spec_f)

    def test_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(torchaudio.transforms.MelSpectrogram, tensor)

    def test_MFCC(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(torchaudio.transforms.MFCC, tensor)

    def test_Resample(self):
        tensor = torch.rand((2, 1000))
        sample_rate = 100.
        sample_rate_2 = 50.

        _test_script_module(torchaudio.transforms.Resample, tensor, sample_rate, sample_rate_2)

    def test_ComplexNorm(self):
        tensor = torch.rand((1, 2, 201, 2))
        _test_script_module(torchaudio.transforms.ComplexNorm, tensor)

    def test_MuLawEncoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(torchaudio.transforms.MuLawEncoding, tensor)

    def test_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(torchaudio.transforms.MuLawDecoding, tensor)

    def test_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
        _test_script_module(
            torchaudio.transforms.TimeStretch,
            tensor, n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate)

    def test_Fade(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)
        fade_in_len = 3000
        fade_out_len = 3000

        _test_script_module(torchaudio.transforms.Fade, waveform, fade_in_len, fade_out_len)

    def test_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
        _test_script_module(
            torchaudio.transforms.FrequencyMasking, tensor, freq_mask_param=60, iid_masks=False)

    def test_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
        _test_script_module(
            torchaudio.transforms.TimeMasking, tensor, time_mask_param=30, iid_masks=False)

    def test_Vol(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)
        _test_script_module(torchaudio.transforms.Vol, waveform, 1.1)