test_legacy.py 6.25 KB
Newer Older
David Pollack's avatar
David Pollack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import unittest
import torch
import torchaudio
from torchaudio.legacy import save, load
import math
import os


class Test_LoadSave(unittest.TestCase):
    test_dirpath = os.path.dirname(os.path.realpath(__file__))
    test_filepath = os.path.join(test_dirpath, "assets",
                                 "steam-train-whistle-daniel_simon.mp3")

    def test_load(self):
        # check normal loading
        x, sr = load(self.test_filepath)
        self.assertEqual(sr, 44100)
        self.assertEqual(x.size(), (278756, 2))
        self.assertGreater(x.sum(), 0)

        # check normalizing
        x, sr = load(self.test_filepath, normalization=True)
        self.assertEqual(x.dtype, torch.float32)
        self.assertTrue(x.min() >= -1.0)
        self.assertTrue(x.max() <= 1.0)

        # check raising errors
        with self.assertRaises(OSError):
            load("file-does-not-exist.mp3")

        with self.assertRaises(OSError):
            tdir = os.path.join(
                os.path.dirname(self.test_dirpath), "torchaudio")
            load(tdir)

    def test_save(self):
        # load signal
        x, sr = load(self.test_filepath)

        # check save
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # check automatic normalization
        x /= 1 << 31
        save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # test save 1d tensor
        x = x[:, 0]  # get mono signal
        x.squeeze_()  # remove channel dim
        save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't allow invalid sizes as inputs
        with self.assertRaises(ValueError):
            x.unsqueeze_(0)  # N x L not L x N
            save(new_filepath, x, sr)

        with self.assertRaises(ValueError):
            x.squeeze_()
            x.unsqueeze_(1)
            x.unsqueeze_(0)  # 1 x L x 1
            save(new_filepath, x, sr)

        # automatically convert sr from floating point to int
        x.squeeze_(0)
        save(new_filepath, x, float(sr))
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't save to folders that don't exist
        with self.assertRaises(OSError):
            new_filepath = os.path.join(self.test_dirpath, "no-path",
                                        "test.wav")
            save(new_filepath, x, sr)

        # save created file
        sinewave_filepath = os.path.join(self.test_dirpath, "assets",
                                         "sinewave.wav")
        sr = 16000
        freq = 440
        volume = 0.3

        y = (torch.cos(
            2 * math.pi * torch.arange(0, 4 * sr).float() * freq / sr))
        y.unsqueeze_(1)
        # y is between -1 and 1, so must scale
        y = (y * volume * 2**31).long()
        save(sinewave_filepath, y, sr)
        self.assertTrue(os.path.isfile(sinewave_filepath))

        # test precision
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        si, ei = torchaudio.info(sinewave_filepath)
        save(new_filepath, y, sr, precision=16)
        si16, ei16 = torchaudio.info(new_filepath)
        self.assertEqual(si.precision, 32)
        self.assertEqual(si16.precision, 16)
        os.unlink(new_filepath)

    def test_load_and_save_is_identity(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        tensor, sample_rate = load(input_path)
        output_path = os.path.join(self.test_dirpath, 'test.wav')
        save(output_path, tensor, sample_rate, 32)
        tensor2, sample_rate2 = load(output_path)
        self.assertTrue(tensor.allclose(tensor2))
        self.assertEqual(sample_rate, sample_rate2)
        os.unlink(output_path)

    def test_load_partial(self):
        num_frames = 100
        offset = 200
        # load entire mono sinewave wav file, load a partial copy and then compare
        input_sine_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        x_sine_full, sr_sine = load(input_sine_path)
        x_sine_part, _ = load(input_sine_path, num_frames=num_frames, offset=offset)
123
        l1_error = x_sine_full[offset:(num_frames + offset)].sub(x_sine_part).abs().sum().item()
David Pollack's avatar
David Pollack committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        # test for the correct number of samples and that the correct portion was loaded
        self.assertEqual(x_sine_part.size(0), num_frames)
        self.assertEqual(l1_error, 0.)

        # create a two channel version of this wavefile
        x_2ch_sine = x_sine_full.repeat(1, 2)
        out_2ch_sine_path = os.path.join(self.test_dirpath, 'assets', '2ch_sinewave.wav')
        save(out_2ch_sine_path, x_2ch_sine, sr_sine)
        x_2ch_sine_load, _ = load(out_2ch_sine_path, num_frames=num_frames, offset=offset)
        os.unlink(out_2ch_sine_path)
        l1_error = x_2ch_sine_load.sub(x_2ch_sine[offset:(offset + num_frames)]).abs().sum().item()
        self.assertEqual(l1_error, 0.)

        # test with two channel mp3
        x_2ch_full, sr_2ch = load(self.test_filepath, normalization=True)
        x_2ch_part, _ = load(self.test_filepath, normalization=True, num_frames=num_frames, offset=offset)
140
        l1_error = x_2ch_full[offset:(offset + num_frames)].sub(x_2ch_part).abs().sum().item()
David Pollack's avatar
David Pollack committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        self.assertEqual(x_2ch_part.size(0), num_frames)
        self.assertEqual(l1_error, 0.)

        # check behavior if number of samples would exceed file length
        offset_ns = 300
        x_ns, _ = load(input_sine_path, num_frames=100000, offset=offset_ns)
        self.assertEqual(x_ns.size(0), x_sine_full.size(0) - offset_ns)

        # check when offset is beyond the end of the file
        with self.assertRaises(RuntimeError):
            load(input_sine_path, offset=100000)

    def test_z_get_info(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        channels, samples, rate, precision = (1, 64000, 16000, 32)
        si, ei = torchaudio.info(input_path)
        self.assertEqual(si.channels, channels)
        self.assertEqual(si.length, samples)
        self.assertEqual(si.rate, rate)
        self.assertEqual(ei.bits_per_sample, precision)

if __name__ == '__main__':
    unittest.main()