test_dataloader.py 1.47 KB
Newer Older
David Pollack's avatar
David Pollack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import unittest
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torchaudio
import math
import os


class TORCHAUDIODS(Dataset):

    test_dirpath = os.path.dirname(os.path.realpath(__file__))

    def __init__(self):
        self.asset_dirpath = os.path.join(self.test_dirpath, "assets")
        self.data = [os.path.join(self.asset_dirpath, fn) for fn in os.listdir(self.asset_dirpath)]
        self.si, self.ei = torchaudio.info(os.path.join(self.asset_dirpath, "sinewave.wav"))
        self.si.precision = 16
David Pollack's avatar
David Pollack committed
19
20
        self.E = torchaudio.sox_effects.SoxEffectsChain()
        self.E.append_effect_to_chain("rate", [self.si.rate])  # resample to 16000hz
21
        self.E.append_effect_to_chain("channels", [self.si.channels])  # mono signal
David Pollack's avatar
David Pollack committed
22
        self.E.append_effect_to_chain("trim", [0, "16000s"])  # first 16000 samples of audio
David Pollack's avatar
David Pollack committed
23
24
25
26
27
28
29
30
31
32

    def __getitem__(self, index):
        fn = self.data[index]
        self.E.set_input_file(fn)
        x, sr = self.E.sox_build_flow_effects()
        return x

    def __len__(self):
        return len(self.data)

33

34
class Test_DataLoader(unittest.TestCase):
David Pollack's avatar
David Pollack committed
35
36
37
38
39
    def test_1(self):
        expected_size = (2, 1, 16000)
        ds = TORCHAUDIODS()
        dl = DataLoader(ds, batch_size=2)
        for x in dl:
40
            # print(x.size())
David Pollack's avatar
David Pollack committed
41
42
43
44
45
46
47
48
            continue

        self.assertTrue(x.size() == expected_size)

if __name__ == '__main__':
    torchaudio.initialize_sox()
    unittest.main()
    torchaudio.shutdown_sox()