lightning.py 12.2 KB
Newer Older
1
2
3
import json
import math
import os
4
from collections import namedtuple
5
6
7
8
9
10
from typing import List, Tuple

import sentencepiece as spm
import torch
import torchaudio
import torchaudio.functional as F
11
from pytorch_lightning import LightningModule
12
from torchaudio.prototype.models import Hypothesis, RNNTBeamSearch, emformer_rnnt_base
13
14


15
Batch = namedtuple("Batch", ["features", "feature_lengths", "targets", "target_lengths"])
16
17
18
19
20


_decibel = 2 * 20 * math.log10(torch.iinfo(torch.int16).max)
_gain = pow(10, 0.05 * _decibel)

21
_spectrogram_transform = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=400, n_mels=80, hop_length=160)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def _batch_by_token_count(idx_target_lengths, token_limit):
    batches = []
    current_batch = []
    current_token_count = 0
    for idx, target_length in idx_target_lengths:
        if current_token_count + target_length > token_limit:
            batches.append(current_batch)
            current_batch = [idx]
            current_token_count = target_length
        else:
            current_batch.append(idx)
            current_token_count += target_length

    if current_batch:
        batches.append(current_batch)

    return batches


class CustomDataset(torch.utils.data.Dataset):
    r"""Sort samples by target length and batch to max token count."""

    def __init__(self, base_dataset, max_token_limit):
        super().__init__()
        self.base_dataset = base_dataset

        fileid_to_target_length = {}
        idx_target_lengths = [
            (idx, self._target_length(fileid, fileid_to_target_length))
            for idx, fileid in enumerate(self.base_dataset._walker)
        ]

        assert len(idx_target_lengths) > 0

58
        idx_target_lengths = sorted(idx_target_lengths, key=lambda x: x[1], reverse=True)
59
60
61
62
63
64
65
66
67
68

        assert max_token_limit >= idx_target_lengths[0][1]

        self.batches = _batch_by_token_count(idx_target_lengths, max_token_limit)

    def _target_length(self, fileid, fileid_to_target_length):
        if fileid not in fileid_to_target_length:
            speaker_id, chapter_id, _ = fileid.split("-")

            file_text = speaker_id + "-" + chapter_id + self.base_dataset._ext_txt
69
            file_text = os.path.join(self.base_dataset._path, speaker_id, chapter_id, file_text)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

            with open(file_text) as ft:
                for line in ft:
                    fileid_text, transcript = line.strip().split(" ", 1)
                    fileid_to_target_length[fileid_text] = len(transcript)

        return fileid_to_target_length[fileid]

    def __getitem__(self, idx):
        return [self.base_dataset[subidx] for subidx in self.batches[idx]]

    def __len__(self):
        return len(self.batches)


class TimeMasking(torchaudio.transforms._AxisMasking):
86
    def __init__(self, time_mask_param: int, min_mask_p: float, iid_masks: bool = False) -> None:
87
88
89
90
91
        super(TimeMasking, self).__init__(time_mask_param, 2, iid_masks)
        self.min_mask_p = min_mask_p

    def forward(self, specgram: torch.Tensor, mask_value: float = 0.0) -> torch.Tensor:
        if self.iid_masks and specgram.dim() == 4:
92
93
            mask_param = min(self.mask_param, self.min_mask_p * specgram.shape[self.axis + 1])
            return F.mask_along_axis_iid(specgram, mask_param, mask_value, self.axis + 1)
94
        else:
95
            mask_param = min(self.mask_param, self.min_mask_p * specgram.shape[self.axis])
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            return F.mask_along_axis(specgram, mask_param, mask_value, self.axis)


class FunctionalModule(torch.nn.Module):
    def __init__(self, functional):
        super().__init__()
        self.functional = functional

    def forward(self, input):
        return self.functional(input)


class GlobalStatsNormalization(torch.nn.Module):
    def __init__(self, global_stats_path):
        super().__init__()

        with open(global_stats_path) as f:
            blob = json.loads(f.read())

        self.mean = torch.tensor(blob["mean"])
        self.invstddev = torch.tensor(blob["invstddev"])

    def forward(self, input):
        return (input - self.mean) * self.invstddev


def _piecewise_linear_log(x):
    x[x > math.e] = torch.log(x[x > math.e])
    x[x <= math.e] = x[x <= math.e] / math.e
    return x


class WarmupLR(torch.optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer, warmup_updates, last_epoch=-1, verbose=False):
        self.warmup_updates = warmup_updates
        super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)

    def get_lr(self):
134
        return [(min(1.0, self._step_count / self.warmup_updates)) * base_lr for base_lr in self.base_lrs]
135
136
137
138
139
140
141
142
143
144
145


def post_process_hypos(
    hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
    post_process_remove_list = [
        sp_model.unk_id(),
        sp_model.eos_id(),
        sp_model.pad_id(),
    ]
    filtered_hypo_tokens = [
146
        [token_index for token_index in h.tokens[1:] if token_index not in post_process_remove_list] for h in hypos
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    ]
    hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
    hypos_ali = [h.alignment[1:] for h in hypos]
    hypos_ids = [h.tokens[1:] for h in hypos]
    hypos_score = [[math.exp(h.score)] for h in hypos]

    nbest_batch = list(zip(hypos_str, hypos_score, hypos_ali, hypos_ids))

    return nbest_batch


class RNNTModule(LightningModule):
    def __init__(
        self,
        *,
        librispeech_path: str,
        sp_model_path: str,
        global_stats_path: str,
    ):
        super().__init__()

        self.model = emformer_rnnt_base()
        self.loss = torchaudio.transforms.RNNTLoss(reduction="sum", clamp=1.0)
170
171
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4, betas=(0.9, 0.999), eps=1e-8)
        self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, factor=0.96, patience=0)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        self.warmup_lr_scheduler = WarmupLR(self.optimizer, 10000)

        self.train_data_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: _piecewise_linear_log(x * _gain)),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(lambda x: x.transpose(1, 2)),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.FrequencyMasking(27),
            TimeMasking(100, 0.2),
            TimeMasking(100, 0.2),
            FunctionalModule(lambda x: torch.nn.functional.pad(x, (0, 4))),
            FunctionalModule(lambda x: x.transpose(1, 2)),
        )
        self.valid_data_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: _piecewise_linear_log(x * _gain)),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(lambda x: x.transpose(1, 2)),
            FunctionalModule(lambda x: torch.nn.functional.pad(x, (0, 4))),
            FunctionalModule(lambda x: x.transpose(1, 2)),
        )

        self.librispeech_path = librispeech_path

        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.blank_idx = self.sp_model.get_piece_size()

    def _extract_labels(self, samples: List):
        targets = [self.sp_model.encode(sample[2].lower()) for sample in samples]
        lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
        targets = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(elem) for elem in targets],
            batch_first=True,
            padding_value=1.0,
        ).to(dtype=torch.int32)
        return targets, lengths

    def _train_extract_features(self, samples: List):
209
        mel_features = [_spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
210
211
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.train_data_pipeline(features)
212
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
213
214
215
        return features, lengths

    def _valid_extract_features(self, samples: List):
216
        mel_features = [_spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
217
218
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.valid_data_pipeline(features)
219
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        return features, lengths

    def _train_collate_fn(self, samples: List):
        features, feature_lengths = self._train_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _valid_collate_fn(self, samples: List):
        features, feature_lengths = self._valid_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _test_collate_fn(self, samples: List):
        return self._valid_collate_fn(samples), samples

    def _step(self, batch, batch_idx, step_type):
        if batch is None:
            return None

239
        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        output, src_lengths, _, _ = self.model(
            batch.features,
            batch.feature_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [
                {
                    "scheduler": self.lr_scheduler,
                    "monitor": "Losses/val_loss",
                    "interval": "epoch",
                },
                {"scheduler": self.warmup_lr_scheduler, "interval": "step"},
            ],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
268
        hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "test")

    def train_dataloader(self):
        dataset = torch.utils.data.ConcatDataset(
            [
                CustomDataset(
284
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-360"),
285
286
287
                    1000,
                ),
                CustomDataset(
288
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-100"),
289
290
291
                    1000,
                ),
                CustomDataset(
292
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-other-500"),
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                    1000,
                ),
            ]
        )
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._train_collate_fn,
            num_workers=10,
            shuffle=True,
        )
        return dataloader

    def val_dataloader(self):
        dataset = torch.utils.data.ConcatDataset(
            [
                CustomDataset(
310
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-clean"),
311
312
313
                    1000,
                ),
                CustomDataset(
314
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-other"),
315
316
317
318
319
                    1000,
                ),
            ]
        )
        dataloader = torch.utils.data.DataLoader(
320
321
322
323
            dataset,
            batch_size=None,
            collate_fn=self._valid_collate_fn,
            num_workers=10,
324
325
326
327
        )
        return dataloader

    def test_dataloader(self):
328
329
        dataset = torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="test-clean")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
330
        return dataloader