test_datasets.py 5.44 KB
Newer Older
1
import os
2
3
4
5
import unittest

from torchaudio.datasets.commonvoice import COMMONVOICE
from torchaudio.datasets.librispeech import LIBRISPEECH
6
from torchaudio.datasets.speechcommands import SPEECHCOMMANDS
Vincent QB's avatar
Vincent QB committed
7
from torchaudio.datasets.utils import diskcache_iterator, bg_iterator
8
9
from torchaudio.datasets.vctk import VCTK
from torchaudio.datasets.yesno import YESNO
Taras Sereda's avatar
Taras Sereda committed
10
from torchaudio.datasets.ljspeech import LJSPEECH
11
from torchaudio.datasets.gtzan import GTZAN
jimchen90's avatar
jimchen90 committed
12
from torchaudio.datasets.cmuarctic import CMUARCTIC
jimchen90's avatar
jimchen90 committed
13
from torchaudio.datasets.libritts import LIBRITTS
14

15
16
17
18
19
20
21
22
from .common_utils import (
    TempDirMixin,
    TorchaudioTestCase,
    get_asset_path,
    get_whitenoise,
    save_wav,
    normalize_wav,
)
Vincent QB's avatar
Vincent QB committed
23

24

25
class TestDatasets(TorchaudioTestCase):
moto's avatar
moto committed
26
    backend = 'default'
27
    path = get_asset_path()
28
29

    def test_vctk(self):
Vincent QB's avatar
Vincent QB committed
30
        data = VCTK(self.path)
31
32
33
34
35
36
        data[0]

    def test_librispeech(self):
        data = LIBRISPEECH(self.path, "dev-clean")
        data[0]

moto's avatar
moto committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    def test_ljspeech(self):
        data = LJSPEECH(self.path)
        data[0]

    def test_speechcommands(self):
        data = SPEECHCOMMANDS(self.path)
        data[0]

    def test_gtzan(self):
        data = GTZAN(self.path)
        data[0]

    def test_cmuarctic(self):
        data = CMUARCTIC(self.path)
        data[0]


54
class TestCommonVoice(TorchaudioTestCase):
55
    backend = 'default'
56
    path = get_asset_path()
moto's avatar
moto committed
57

58
    def test_commonvoice(self):
59
        data = COMMONVOICE(self.path, url="tatar")
60
61
62
        data[0]

    def test_commonvoice_diskcache(self):
63
        data = COMMONVOICE(self.path, url="tatar")
Vincent QB's avatar
Vincent QB committed
64
        data = diskcache_iterator(data)
65
66
67
68
69
        # Save
        data[0]
        # Load
        data[0]

Vincent QB's avatar
Vincent QB committed
70
    def test_commonvoice_bg(self):
71
        data = COMMONVOICE(self.path, url="tatar")
Vincent QB's avatar
Vincent QB committed
72
        data = bg_iterator(data, 5)
moto's avatar
moto committed
73
        for _ in data:
Vincent QB's avatar
Vincent QB committed
74
75
            pass

76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class TestYesNo(TempDirMixin, TorchaudioTestCase):
    backend = 'default'

    root_dir = None
    data = []
    labels = [
        [0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 1, 1, 1],
        [0, 1, 0, 1, 0, 1, 1, 0],
        [1, 1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1],
    ]

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        base_dir = os.path.join(cls.root_dir, 'waves_yesno')
        os.makedirs(base_dir, exist_ok=True)
        for label in cls.labels:
            filename = f'{"_".join(str(l) for l in label)}.wav'
            path = os.path.join(base_dir, filename)
            data = get_whitenoise(sample_rate=8000, duration=6, n_channels=1, dtype='int16')
            save_wav(path, data, 8000)
            cls.data.append(normalize_wav(data))

    def test_yesno(self):
        dataset = YESNO(self.root_dir)
        samples = list(dataset)
        samples.sort(key=lambda s: s[2])
        for i, (waveform, sample_rate, label) in enumerate(samples):
            expected_label = self.labels[i]
            expected_data = self.data[i]
            self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
            assert sample_rate == 8000
            assert label == expected_label


jimchen90's avatar
jimchen90 committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class TestLibriTTS(TempDirMixin, TorchaudioTestCase):
    backend = 'default'

    root_dir = None
    data = []
    utterance_ids = [
        [19, 198, '000000', '000000'],
        [26, 495, '000004', '000000'],
    ]
    original_text = 'this is the original text.'
    normalized_text = 'this is the normalized text.'

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        base_dir = os.path.join(cls.root_dir, 'LibriTTS', 'train-clean-100')
        for i, utterance_id in enumerate(cls.utterance_ids):
            filename = f'{"_".join(str(u) for u in utterance_id)}.wav'
            file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1]))
            os.makedirs(file_dir, exist_ok=True)
            path = os.path.join(file_dir, filename)

            data = get_whitenoise(sample_rate=8000, duration=6, n_channels=1, dtype='int16', seed=i)
            save_wav(path, data, 8000)
            cls.data.append(normalize_wav(data))

            original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt'
            path_original = os.path.join(file_dir, original_text_filename)
            f = open(path_original, 'w')
            f.write(cls.original_text)
            f.close()

            normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt'
            path_normalized = os.path.join(file_dir, normalized_text_filename)
            f = open(path_normalized, 'w')
            f.write(cls.normalized_text)
            f.close()

    def test_libritts(self):
        dataset = LIBRITTS(self.root_dir)
        samples = list(dataset)
        samples.sort(key=lambda s: s[4])

        for i, (waveform,
                sample_rate,
                original_text,
                normalized_text,
                speaker_id,
                chapter_id,
                utterance_id) in enumerate(samples):

            expected_ids = self.utterance_ids[i]
            expected_data = self.data[i]
            self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
            assert sample_rate == 8000
            assert speaker_id == expected_ids[0]
            assert chapter_id == expected_ids[1]
            assert original_text == self.original_text
            assert normalized_text == self.normalized_text
            assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}'