test_dataloader.py 1.46 KB
Newer Older
David Pollack's avatar
David Pollack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import unittest
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torchaudio
import math
import os


class TORCHAUDIODS(Dataset):

    test_dirpath = os.path.dirname(os.path.realpath(__file__))

    def __init__(self):
        self.asset_dirpath = os.path.join(self.test_dirpath, "assets")
        self.data = [os.path.join(self.asset_dirpath, fn) for fn in os.listdir(self.asset_dirpath)]
        self.si, self.ei = torchaudio.info(os.path.join(self.asset_dirpath, "sinewave.wav"))
        self.si.precision = 16
David Pollack's avatar
David Pollack committed
19
20
21
22
        self.E = torchaudio.sox_effects.SoxEffectsChain()
        self.E.append_effect_to_chain("rate", [self.si.rate])  # resample to 16000hz
        self.E.append_effect_to_chain("channels", [self.si.channels])  # mono singal
        self.E.append_effect_to_chain("trim", [0, "16000s"])  # first 16000 samples of audio
David Pollack's avatar
David Pollack committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    def __getitem__(self, index):
        fn = self.data[index]
        self.E.set_input_file(fn)
        x, sr = self.E.sox_build_flow_effects()
        return x

    def __len__(self):
        return len(self.data)

class Test_LoadSave(unittest.TestCase):
    def test_1(self):
        expected_size = (2, 1, 16000)
        ds = TORCHAUDIODS()
        dl = DataLoader(ds, batch_size=2)
        for x in dl:
            #print(x.size())
            continue

        self.assertTrue(x.size() == expected_size)

if __name__ == '__main__':
    torchaudio.initialize_sox()
    unittest.main()
    torchaudio.shutdown_sox()