finetune.py 9.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
"""Fine-tune the HuBERTPretrainModel on 10 hours of LibriLightLimited dataset.
Example:
python finetune.py --dataset-path ./root/datasets/ --exp-dir ./exp_finetune \
  --checkpoint /exp_iter2/checkpoints_librispeech_hubert_pretrain_base/epoch=361-step=399999.ckpt \
  --gpus 1 --debug --warmup-updates 2000 --hold-updates 8000 --decay-updates 10000 \
  --max-updates 20000 --learning-rate 5e-5
"""

import logging
import pathlib
12
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, RawDescriptionHelpFormatter
13
14
15
16
17
18
from typing import Tuple

from lightning import HuBERTFineTuneModule

from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
19
from pytorch_lightning.utilities.seed import seed_everything
20
21
22
23
24
25
26
27
28
29
30
31
32


logger = logging.getLogger(__name__)


class _Formatter(ArgumentDefaultsHelpFormatter, RawDescriptionHelpFormatter):
    # To use ArgumentDefaultsHelpFormatter as the formatter_class and
    # RawDescriptionHelpFormatter to add custom formatting to description or epilog.
    # Check: https://stackoverflow.com/a/18462760
    pass


def run_train(args):
33
    seed_everything(1337)
34
35
36
    checkpoint_dir = args.exp_dir / f"checkpoints_{args.model_name}"
    checkpoint = ModelCheckpoint(
        checkpoint_dir,
37
        monitor="val_loss",
38
39
40
41
42
43
44
        mode="min",
        save_top_k=5,
        save_weights_only=False,
        verbose=True,
    )
    train_checkpoint = ModelCheckpoint(
        checkpoint_dir,
45
        monitor="train_loss",
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        mode="min",
        save_top_k=5,
        save_weights_only=False,
        verbose=True,
    )
    callbacks = [
        checkpoint,
        train_checkpoint,
    ]
    trainer = Trainer(
        default_root_dir=args.exp_dir,
        max_steps=args.max_updates,
        num_nodes=args.num_nodes,
        gpus=args.gpus,
        accelerator="gpu",
        strategy="ddp",
        replace_sampler_ddp=False,
        callbacks=callbacks,
        reload_dataloaders_every_n_epochs=1,
65
66
        val_check_interval=500,
        check_val_every_n_epoch=None,
67
68
69
70
71
72
73
74
75
76
77
78
    )

    model = HuBERTFineTuneModule(
        model_name=args.model_name,
        encoder_projection_dropout=args.encoder_projection_dropout,
        encoder_attention_dropout=args.encoder_attention_dropout,
        encoder_ff_interm_dropout=args.encoder_ff_interm_dropout,
        encoder_dropout=args.encoder_dropout,
        encoder_layer_drop=args.encoder_layer_drop,
        mask_prob=args.mask_prob,
        mask_channel_prob=args.mask_channel_prob,
        mask_channel_length=args.mask_channel_length,
79
        num_classes=args.num_classes,
80
81
        aux_num_out=args.aux_num_out,
        checkpoint=args.checkpoint,
82
        dataset_path=args.dataset_path,
83
84
85
86
87
88
89
90
91
92
93
        seconds_per_batch=args.seconds_per_batch,
        subset=args.subset,
        learning_rate=args.learning_rate,
        betas=args.betas,
        adam_eps=args.adam_eps,
        weight_decay=args.weight_decay,
        freeze_encoder_updates=args.freeze_encoder_updates,
        warmup_updates=args.warmup_updates,
        hold_updates=args.hold_updates,
        decay_updates=args.decay_updates,
    )
94
    trainer.fit(model, ckpt_path=args.resume_checkpoint)
95
96
97
98
99
100
101
102
103
104
105
106
107


def _parse_args():
    parser = ArgumentParser(
        description=__doc__,
        formatter_class=_Formatter,
    )
    parser.add_argument(
        "--dataset-path",
        type=pathlib.Path,
        required=True,
        help="Path to the LibriSpeech and LibriLightLimited datasets.",
    )
108
109
110
111
112
113
114
115
116
117
118
119
    parser.add_argument(
        "--checkpoint",
        type=str,
        required=True,
        help="Path to the pre-trained HuBERTPretrainModel checkpoint as the initialization.",
    )
    parser.add_argument(
        "--resume-checkpoint",
        default=None,
        type=str,
        help="The path to the checkpoint to resume the fine-tuning if training fails in the middle.",
    )
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    parser.add_argument(
        "--exp-dir",
        default=pathlib.Path("./exp_finetune"),
        type=pathlib.Path,
        help="Directory to save checkpoints and logs to. (Default: './exp_finetune')",
    )
    parser.add_argument(
        "--model-name",
        default="hubert_pretrain_base",
        choices=["hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge"],
        type=str,
        help="The HuBERTPretrainModel to fine-tune. (Default: 'hubert_pretrain_base')",
    )
    parser.add_argument(
        "--encoder-projection-dropout",
        default=0.0,
        type=float,
        help="The dropout probability applied after the input feature "
        "is projected to ``encoder_embed_dim``. (Default: 0.0)",
    )
    parser.add_argument(
        "--encoder-attention-dropout",
        default=0.0,
        type=float,
        help="The dropout probability applied after softmax in self-attention layer." "(Default: 0.0)",
    )
    parser.add_argument(
        "--encoder-ff-interm-dropout",
        default=0.1,
        type=float,
        help="The dropout probability applied in feedforward layer." "(Default: 0.1)",
    )
    parser.add_argument(
        "--encoder-dropout",
        default=0.0,
        type=float,
        help="The dropout probability applied at the end of feed forward layer." "(Default: 0.0)",
    )
    parser.add_argument(
        "--encoder-layer-drop",
160
        default=0.05,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        type=float,
        help="Probability to drop each encoder layer during training. (Default: 0.1)",
    )
    parser.add_argument(
        "--mask-prob",
        default=0.65,
        type=float,
        help="Probability to mask the frames of the convolutional layer feature." "(Default: 0.75)",
    )
    parser.add_argument(
        "--mask-channel-prob",
        default=0.5,
        type=float,
        help="Probability to mask the feature dimension of the convolutional layer feature." "(Default: 0.5)",
    )
    parser.add_argument(
        "--mask-channel-length",
        default=64,
        type=int,
        help="Minimum space between spans (if no overlap is enabled) for channel masking." "(Default: 64)",
    )
    parser.add_argument(
183
184
        "--num-classes",
        choices=[100, 500],
185
        type=int,
186
187
        default=500,
        help="The ``num_class`` in the pre-trained checkpoint. (Default: 500)",
188
189
190
191
192
193
194
195
    )
    parser.add_argument(
        "--aux-num-out",
        default=29,
        type=int,
        help="The dimension of linear layer for CTC training. (Default: 29)",
    )
    parser.add_argument(
196
        "--learning-rate", default=5e-5, type=float, help="The learning rate of Adam optimizer. (Default: 5e-5)"
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    )
    parser.add_argument(
        "--betas",
        default=(0.9, 0.98),
        type=Tuple,
        help="The coefficients for computing running averages of gradient and its square (Default: (0.9, 0.98))",
    )
    parser.add_argument(
        "--adam-eps",
        default=1e-8,
        type=float,
        help="Epsilon value in Adam optimizer. (Default: 1e-8)",
    )
    parser.add_argument(
        "--weight-decay",
212
        default=0.0,
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        type=float,
        help="Weight decay (L2 penalty) (Default: 0.0)",
    )
    parser.add_argument(
        "--num_nodes",
        default=1,
        type=int,
        help="Number of nodes to use for fine-tuning. (Default: 1)",
    )
    parser.add_argument(
        "--gpus",
        default=1,
        type=int,
        help="Number of GPUs per node to use for fine-tuning. (Default: 1)",
    )
    parser.add_argument(
        "--freeze-encoder-updates",
        default=10000,
        type=int,
        help="Number of steps to freeze the transformer encoder in HuBERT. (Default: 10000)",
    )
    parser.add_argument(
        "--warmup-updates",
        default=2000,
        type=int,
        help="Number of steps for warm up the learning rate. (Default: 8000)",
    )
    parser.add_argument(
        "--hold-updates",
        default=8000,
        type=int,
        help="Number of steps for keeping the peak learning rate. (Default: 0)",
    )
    parser.add_argument(
        "--decay-updates",
        default=10000,
        type=int,
        help="Number of steps for decreasing the learning rate. (Default: 72000)",
    )
    parser.add_argument(
        "--max-updates",
        default=20000,
        type=int,
        help="Total number of training steps. (Default: 250000)",
    )
    parser.add_argument(
        "--seconds-per-batch",
        default=200,
        type=float,
        help="Number of seconds of audio in a mini-batch. (Default: 200)",
    )
    parser.add_argument(
        "--subset",
        default="10h",
        type=str,
        choices=["10min", "1h", "10h"],
        help="The subset of LibriLightLimited dataset for fine-tuning. (Default: '10h')",
    )
    parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging")
    return parser.parse_args()


def _init_logger(debug):
    fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
    level = logging.DEBUG if debug else logging.INFO
    logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")


def cli_main():
    args = _parse_args()
    _init_logger(args.debug)
    run_train(args)


if __name__ == "__main__":
    cli_main()