utils.py 10.4 KB
Newer Older
1
import unittest
2
import random
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import torch
from torchaudio.prototype.rnnt_loss import RNNTLoss

from .numpy_transducer import NumpyTransducerLoss


def compute_with_numpy_transducer(data):
    costs = NumpyTransducerLoss(
        blank=data["blank"],
    )(
        logits=data["logits"],
        logit_lengths=data["logit_lengths"],
        target_lengths=data["target_lengths"],
        targets=data["targets"],
    )

    loss = torch.sum(costs)
    loss.backward()
21
22
    costs = costs.cpu()
    gradients = data["logits"].saved_grad.cpu()
23
24
25
    return costs, gradients


26
def compute_with_pytorch_transducer(data):
27
28
29
    costs = RNNTLoss(
        blank=data["blank"],
        fused_log_softmax=data.get("fused_log_softmax", True),
30
        reduction="none",
31
32
33
34
35
36
37
38
39
    )(
        logits=data["logits"],
        logit_lengths=data["logit_lengths"],
        target_lengths=data["target_lengths"],
        targets=data["targets"],
    )

    loss = torch.sum(costs)
    loss.backward()
40
41
    costs = costs.cpu()
    gradients = data["logits"].saved_grad.cpu()
42
43
44
    return costs, gradients


45
def get_basic_data(device):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    # Example provided
    # in 6f73a2513dc784c59eec153a45f40bc528355b18
    # of https://github.com/HawkAaron/warp-transducer

    logits = torch.tensor(
        [
            [
                [
                    [0.1, 0.6, 0.1, 0.1, 0.1],
                    [0.1, 0.1, 0.6, 0.1, 0.1],
                    [0.1, 0.1, 0.2, 0.8, 0.1],
                ],
                [
                    [0.1, 0.6, 0.1, 0.1, 0.1],
                    [0.1, 0.1, 0.2, 0.1, 0.1],
                    [0.7, 0.1, 0.2, 0.1, 0.1],
                ],
            ]
        ],
65
66
        dtype=torch.float32,
        device=device,
67
    )
68
69
70
    targets = torch.tensor([[1, 2]], dtype=torch.int, device=device)
    logit_lengths = torch.tensor([2], dtype=torch.int, device=device)
    target_lengths = torch.tensor([2], dtype=torch.int, device=device)
71
72
73
74
75
76
77
78

    logits.requires_grad_(True)

    return logits, targets, logit_lengths, target_lengths


def get_B1_T10_U3_D4_data(
    random=False,
79
80
    dtype=torch.float32,
    device=torch.device("cpu"),
81
82
):
    B, T, U, D = 2, 10, 3, 4
83
84

    logits = torch.rand(B, T, U, D, dtype=dtype, device=device)
85
    if not random:
86
87
88
89
90
91
92
93
94
95
96
97
        logits.fill_(0.1)
    logits.requires_grad_(True)

    def grad_hook(grad):
        logits.saved_grad = grad.clone()
    logits.register_hook(grad_hook)

    data = {}
    data["logits"] = logits
    data["logit_lengths"] = torch.tensor([10, 10], dtype=torch.int32, device=device)
    data["target_lengths"] = torch.tensor([2, 2], dtype=torch.int32, device=device)
    data["targets"] = torch.tensor([[1, 2], [1, 2]], dtype=torch.int32, device=device)
98
99
100
101
102
    data["blank"] = 0

    return data


103
104
def get_B1_T2_U3_D5_data(dtype=torch.float32, device=torch.device("cpu")):
    logits = torch.tensor(
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        [
            0.1,
            0.6,
            0.1,
            0.1,
            0.1,
            0.1,
            0.1,
            0.6,
            0.1,
            0.1,
            0.1,
            0.1,
            0.2,
            0.8,
            0.1,
            0.1,
            0.6,
            0.1,
            0.1,
            0.1,
            0.1,
            0.1,
            0.2,
            0.1,
            0.1,
            0.7,
            0.1,
            0.2,
            0.1,
            0.1,
        ],
        dtype=dtype,
138
        device=device,
139
    ).reshape(1, 2, 3, 5)
140
141
142
143
144
145
146
147
148
    logits.requires_grad_(True)

    def grad_hook(grad):
        logits.saved_grad = grad.clone()
    logits.register_hook(grad_hook)

    targets = torch.tensor([[1, 2]], dtype=torch.int32, device=device)
    logit_lengths = torch.tensor([2], dtype=torch.int32, device=device)
    target_lengths = torch.tensor([2], dtype=torch.int32, device=device)
149
150
151

    blank = -1

152
153
    ref_costs = torch.tensor([5.09566688538], dtype=dtype)
    ref_gradients = torch.tensor(
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        [
            0.17703132,
            -0.39992708,
            0.17703132,
            0.17703132,
            -0.13116692,
            0.12247062,
            0.12247062,
            -0.181684,
            0.12247062,
            -0.1857276,
            0.06269141,
            0.06269141,
            0.06928471,
            0.12624498,
            -0.32091248,
            0.05456069,
            -0.2182428,
            0.05456069,
            0.05456069,
            0.05456069,
            0.12073967,
            0.12073967,
            -0.48295838,
            0.12073967,
            0.12073967,
            0.30741188,
            0.16871123,
            0.18645471,
            0.16871123,
            -0.83128875,
        ],
        dtype=dtype,
    ).reshape(1, 2, 3, 5)

    data = {
        "logits": logits,
        "targets": targets,
        "logit_lengths": logit_lengths,
        "target_lengths": target_lengths,
        "blank": blank,
    }

    return data, ref_costs, ref_gradients


200
def get_B2_T4_U3_D3_data(dtype=torch.float32, device=torch.device("cpu")):
201
    # Test from D21322854
202
    logits = torch.tensor(
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        [
            0.065357,
            0.787530,
            0.081592,
            0.529716,
            0.750675,
            0.754135,
            0.609764,
            0.868140,
            0.622532,
            0.668522,
            0.858039,
            0.164539,
            0.989780,
            0.944298,
            0.603168,
            0.946783,
            0.666203,
            0.286882,
            0.094184,
            0.366674,
            0.736168,
            0.166680,
            0.714154,
            0.399400,
            0.535982,
            0.291821,
            0.612642,
            0.324241,
            0.800764,
            0.524106,
            0.779195,
            0.183314,
            0.113745,
            0.240222,
            0.339470,
            0.134160,
            0.505562,
            0.051597,
            0.640290,
            0.430733,
            0.829473,
            0.177467,
            0.320700,
            0.042883,
            0.302803,
            0.675178,
            0.569537,
            0.558474,
            0.083132,
            0.060165,
            0.107958,
            0.748615,
            0.943918,
            0.486356,
            0.418199,
            0.652408,
            0.024243,
            0.134582,
            0.366342,
            0.295830,
            0.923670,
            0.689929,
            0.741898,
            0.250005,
            0.603430,
            0.987289,
            0.592606,
            0.884672,
            0.543450,
            0.660770,
            0.377128,
            0.358021,
        ],
        dtype=dtype,
278
        device=device,
279
    ).reshape(2, 4, 3, 3)
280
    logits.requires_grad_(True)
281

282
283
284
285
286
287
288
    def grad_hook(grad):
        logits.saved_grad = grad.clone()
    logits.register_hook(grad_hook)

    targets = torch.tensor([[1, 2], [1, 1]], dtype=torch.int32, device=device)
    logit_lengths = torch.tensor([4, 4], dtype=torch.int32, device=device)
    target_lengths = torch.tensor([2, 2], dtype=torch.int32, device=device)
289
290
291

    blank = 0

292
    ref_costs = torch.tensor([4.2806528590890736, 3.9384369822503591], dtype=dtype)
293

294
    ref_gradients = torch.tensor(
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        [
            -0.186844,
            -0.062555,
            0.249399,
            -0.203377,
            0.202399,
            0.000977,
            -0.141016,
            0.079123,
            0.061893,
            -0.011552,
            -0.081280,
            0.092832,
            -0.154257,
            0.229433,
            -0.075176,
            -0.246593,
            0.146405,
            0.100188,
            -0.012918,
            -0.061593,
            0.074512,
            -0.055986,
            0.219831,
            -0.163845,
            -0.497627,
            0.209240,
            0.288387,
            0.013605,
            -0.030220,
            0.016615,
            0.113925,
            0.062781,
            -0.176706,
            -0.667078,
            0.367659,
            0.299419,
            -0.356344,
            -0.055347,
            0.411691,
            -0.096922,
            0.029459,
            0.067463,
            -0.063518,
            0.027654,
            0.035863,
            -0.154499,
            -0.073942,
            0.228441,
            -0.166790,
            -0.000088,
            0.166878,
            -0.172370,
            0.105565,
            0.066804,
            0.023875,
            -0.118256,
            0.094381,
            -0.104707,
            -0.108934,
            0.213642,
            -0.369844,
            0.180118,
            0.189726,
            0.025714,
            -0.079462,
            0.053748,
            0.122328,
            -0.238789,
            0.116460,
            -0.598687,
            0.302203,
            0.296484,
        ],
        dtype=dtype,
    ).reshape(2, 4, 3, 3)

    data = {
        "logits": logits,
        "targets": targets,
        "logit_lengths": logit_lengths,
        "target_lengths": target_lengths,
        "blank": blank,
    }

    return data, ref_costs, ref_gradients


383
384
385
386
387
388
389
390
391
def get_random_data(
    max_B=8,
    max_T=128,
    max_U=32,
    max_D=40,
    blank=-1,
    dtype=torch.float32,
    device=torch.device("cpu"),
    seed=None,
392
393
):
    if seed is not None:
394
        torch.manual_seed(seed=seed)
395
396
397
398

    if blank != -1:
        raise ValueError("blank != -1 is not supported yet.")

399
400
401
402
403
404
405
406
407
408
409
410
411
    random.seed(0)
    B = random.randint(1, max_B - 1)
    T = random.randint(5, max_T - 1)
    U = random.randint(5, max_U - 1)
    D = random.randint(2, max_D - 1)

    logit_lengths = torch.randint(low=5, high=T + 1, size=(B,), dtype=torch.int32, device=device)
    target_lengths = torch.randint(low=5, high=U + 1, size=(B,), dtype=torch.int32, device=device)
    max_src_length = torch.max(logit_lengths)
    max_tgt_length = torch.max(target_lengths)

    targets = torch.randint(
        low=0, high=D - 1, size=(B, max_tgt_length), dtype=torch.int32, device=device
412
    )
413
414
415
416
417
418
419
420
421
    logits = torch.rand(
        size=(B, max_src_length, max_tgt_length + 1, D),
        dtype=dtype,
        device=device,
    ).requires_grad_(True)

    def grad_hook(grad):
        logits.saved_grad = grad.clone()
    logits.register_hook(grad_hook)
422
423
424
425
426
427
428
429
430
431

    return {
        "logits": logits,
        "targets": targets,
        "logit_lengths": logit_lengths,
        "target_lengths": target_lengths,
        "blank": blank,
    }


432
def skipIfNoRNNT(test_item):
433
434
435
436
437
    try:
        torch.ops.torchaudio.rnnt_loss
        return test_item
    except RuntimeError:
        return unittest.skip("torchaudio C++ extension is not compiled with RNN transducer loss")