test_compliance_kaldi.py 10.6 KB
Newer Older
1
2
3
4
5
6
import math
import os
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import unittest
7

8
9
10
from . import common_utils
from .compliance import utils as compliance_utils
from .common_utils import AudioBackendScope, BACKENDS
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


def extract_window(window, wave, f, frame_length, frame_shift, snip_edges):
    # just a copy of ExtractWindow from feature-window.cc in python
    def first_sample_of_frame(frame, window_size, window_shift, snip_edges):
        if snip_edges:
            return frame * window_shift
        else:
            midpoint_of_frame = frame * window_shift + window_shift // 2
            beginning_of_frame = midpoint_of_frame - window_size // 2
            return beginning_of_frame

    sample_offset = 0
    num_samples = sample_offset + wave.size(0)
    start_sample = first_sample_of_frame(f, frame_length, frame_shift, snip_edges)
    end_sample = start_sample + frame_length

    if snip_edges:
        assert(start_sample >= sample_offset and end_sample <= num_samples)
    else:
        assert(sample_offset == 0 or start_sample >= sample_offset)

    wave_start = start_sample - sample_offset
    wave_end = wave_start + frame_length
    if wave_start >= 0 and wave_end <= wave.size(0):
        window[f, :] = wave[wave_start:(wave_start + frame_length)]
    else:
        wave_dim = wave.size(0)
        for s in range(frame_length):
            s_in_wave = s + wave_start
            while s_in_wave < 0 or s_in_wave >= wave_dim:
                if s_in_wave < 0:
                    s_in_wave = - s_in_wave - 1
                else:
                    s_in_wave = 2 * wave_dim - 1 - s_in_wave
            window[f, s] = wave[s_in_wave]


class Test_Kaldi(unittest.TestCase):
50
51
52
    test_filepath = common_utils.get_asset_path('kaldi_file.wav')
    test_8000_filepath = common_utils.get_asset_path('kaldi_file_8000.wav')
    kaldi_output_dir = common_utils.get_asset_path('kaldi')
53
    test_filepaths = {prefix: [] for prefix in compliance_utils.TEST_PREFIX}
jamarshon's avatar
jamarshon committed
54
55
56
57
58
59
60
61

    # separating test files by their types (e.g 'spec', 'fbank', etc.)
    for f in os.listdir(kaldi_output_dir):
        dash_idx = f.find('-')
        assert f.endswith('.ark') and dash_idx != -1
        key = f[:dash_idx]
        assert key in test_filepaths
        test_filepaths[key].append(f)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def _test_get_strided_helper(self, num_samples, window_size, window_shift, snip_edges):
        waveform = torch.arange(num_samples).float()
        output = kaldi._get_strided(waveform, window_size, window_shift, snip_edges)

        # from NumFrames in feature-window.cc
        n = window_size
        if snip_edges:
            m = 0 if num_samples < window_size else 1 + (num_samples - window_size) // window_shift
        else:
            m = (num_samples + (window_shift // 2)) // window_shift

        self.assertTrue(output.dim() == 2)
        self.assertTrue(output.shape[0] == m and output.shape[1] == n)

        window = torch.empty((m, window_size))

        for r in range(m):
            extract_window(window, waveform, r, window_size, window_shift, snip_edges)
81
        torch.testing.assert_allclose(window, output)
82
83
84
85
86
87
88
89
90
91
92
93

    def test_get_strided(self):
        # generate any combination where 0 < window_size <= num_samples and
        # 0 < window_shift.
        for num_samples in range(1, 20):
            for window_size in range(1, num_samples + 1):
                for window_shift in range(1, 2 * num_samples + 1):
                    for snip_edges in range(0, 2):
                        self._test_get_strided_helper(num_samples, window_size, window_shift, snip_edges)

    def _create_data_set(self):
        # used to generate the dataset to test on. this is not used in testing (offline procedure)
94
        test_filepath = common_utils.get_asset_path('kaldi_file.wav')
95
96
97
98
99
100
101
102
103
104
105
106
        sr = 16000
        x = torch.arange(0, 20).float()
        # between [-6,6]
        y = torch.cos(2 * math.pi * x) + 3 * torch.sin(math.pi * x) + 2 * torch.cos(x)
        # between [-2^30, 2^30]
        y = (y / 6 * (1 << 30)).long()
        # clear the last 16 bits because they aren't used anyways
        y = ((y >> 16) << 16).float()
        torchaudio.save(test_filepath, y, sr)
        sound, sample_rate = torchaudio.load(test_filepath, normalization=False)
        print(y >> 16)
        self.assertTrue(sample_rate == sr)
107
        torch.testing.assert_allclose(y, sound)
108

jamarshon's avatar
jamarshon committed
109
110
111
112
113
114
115
116
117
118
119
120
121
    def _print_diagnostic(self, output, expect_output):
        # given an output and expected output, it will print the absolute/relative errors (max and mean squared)
        abs_error = output - expect_output
        abs_mse = abs_error.pow(2).sum() / output.numel()
        abs_max_error = torch.max(abs_error.abs())

        relative_error = abs_error / expect_output
        relative_mse = relative_error.pow(2).sum() / output.numel()
        relative_max_error = torch.max(relative_error.abs())

        print('abs_mse:', abs_mse.item(), 'abs_max_error:', abs_max_error.item())
        print('relative_mse:', relative_mse.item(), 'relative_max_error:', relative_max_error.item())

jamarshon's avatar
jamarshon committed
122
123
    def _compliance_test_helper(self, sound_filepath, filepath_key, expected_num_files,
                                expected_num_args, get_output_fn, atol=1e-5, rtol=1e-8):
jamarshon's avatar
jamarshon committed
124
125
        """
        Inputs:
jamarshon's avatar
jamarshon committed
126
            sound_filepath (str): The location of the sound file
jamarshon's avatar
jamarshon committed
127
128
129
130
131
            filepath_key (str): A key to `test_filepaths` which matches which files to use
            expected_num_files (int): The expected number of kaldi files to read
            expected_num_args (int): The expected number of arguments used in a kaldi configuration
            get_output_fn (Callable[[Tensor, List], Tensor]): A function that takes in a sound signal
                and a configuration and returns an output
jamarshon's avatar
jamarshon committed
132
133
            atol (float): absolute tolerance
            rtol (float): relative tolerance
jamarshon's avatar
jamarshon committed
134
        """
jamarshon's avatar
jamarshon committed
135
        sound, sample_rate = torchaudio.load_wav(sound_filepath)
jamarshon's avatar
jamarshon committed
136
137
138
        files = self.test_filepaths[filepath_key]

        assert len(files) == expected_num_files, ('number of kaldi %s file changed to %d' % (filepath_key, len(files)))
139
140
141

        for f in files:
            print(f)
jamarshon's avatar
jamarshon committed
142
143
144

            # Read kaldi's output from file
            kaldi_output_path = os.path.join(self.kaldi_output_dir, f)
145
146
147
148
149
            kaldi_output_dict = {k: v for k, v in torchaudio.kaldi_io.read_mat_ark(kaldi_output_path)}

            assert len(kaldi_output_dict) == 1 and 'my_id' in kaldi_output_dict, 'invalid test kaldi ark file'
            kaldi_output = kaldi_output_dict['my_id']

jamarshon's avatar
jamarshon committed
150
            # Construct the same configuration used by kaldi
151
152
            args = f.split('-')
            args[-1] = os.path.splitext(args[-1])[0]
jamarshon's avatar
jamarshon committed
153
            assert len(args) == expected_num_args, 'invalid test kaldi file name'
154
            args = [compliance_utils.parse(arg) for arg in args]
155

jamarshon's avatar
jamarshon committed
156
157
158
            output = get_output_fn(sound, args)

            self._print_diagnostic(output, kaldi_output)
159
            torch.testing.assert_allclose(output, kaldi_output, atol=atol, rtol=rtol)
jamarshon's avatar
jamarshon committed
160

jamarshon's avatar
jamarshon committed
161
162
163
164
    def test_mfcc_empty(self):
        # Passing in an empty tensor should result in an error
        self.assertRaises(AssertionError, kaldi.mfcc, torch.empty(0))

165
166
    @unittest.skipIf("sox" not in BACKENDS, "sox not available")
    @AudioBackendScope("sox")
jamarshon's avatar
jamarshon committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def test_resample_waveform(self):
        def get_output_fn(sound, args):
            output = kaldi.resample_waveform(sound, args[1], args[2])
            return output

        self._compliance_test_helper(self.test_8000_filepath, 'resample', 32, 3, get_output_fn, atol=1e-2, rtol=1e-5)

    def test_resample_waveform_upsample_size(self):
        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)
        upsample_sound = kaldi.resample_waveform(sound, sample_rate, sample_rate * 2)
        self.assertTrue(upsample_sound.size(-1) == sound.size(-1) * 2)

    def test_resample_waveform_downsample_size(self):
        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)
        downsample_sound = kaldi.resample_waveform(sound, sample_rate, sample_rate // 2)
        self.assertTrue(downsample_sound.size(-1) == sound.size(-1) // 2)

    def test_resample_waveform_identity_size(self):
        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)
        downsample_sound = kaldi.resample_waveform(sound, sample_rate, sample_rate)
        self.assertTrue(downsample_sound.size(-1) == sound.size(-1))

    def _test_resample_waveform_accuracy(self, up_scale_factor=None, down_scale_factor=None,
                                         atol=1e-1, rtol=1e-4):
        # resample the signal and compare it to the ground truth
        n_to_trim = 20
        sample_rate = 1000
        new_sample_rate = sample_rate

        if up_scale_factor is not None:
            new_sample_rate *= up_scale_factor

        if down_scale_factor is not None:
            new_sample_rate //= down_scale_factor

        duration = 5  # seconds
        original_timestamps = torch.arange(0, duration, 1.0 / sample_rate)

        sound = 123 * torch.cos(2 * math.pi * 3 * original_timestamps).unsqueeze(0)
        estimate = kaldi.resample_waveform(sound, sample_rate, new_sample_rate).squeeze()

        new_timestamps = torch.arange(0, duration, 1.0 / new_sample_rate)[:estimate.size(0)]
        ground_truth = 123 * torch.cos(2 * math.pi * 3 * new_timestamps)

        # trim the first/last n samples as these points have boundary effects
        ground_truth = ground_truth[..., n_to_trim:-n_to_trim]
        estimate = estimate[..., n_to_trim:-n_to_trim]

215
        torch.testing.assert_allclose(estimate, ground_truth, atol=atol, rtol=rtol)
jamarshon's avatar
jamarshon committed
216
217
218
219
220
221
222
223

    def test_resample_waveform_downsample_accuracy(self):
        for i in range(1, 20):
            self._test_resample_waveform_accuracy(down_scale_factor=i * 2)

    def test_resample_waveform_upsample_accuracy(self):
        for i in range(1, 20):
            self._test_resample_waveform_accuracy(up_scale_factor=1.0 + i / 20.0)
224

jamarshon's avatar
jamarshon committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def test_resample_waveform_multi_channel(self):
        num_channels = 3

        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)  # (1, 8000)
        multi_sound = sound.repeat(num_channels, 1)  # (num_channels, 8000)

        for i in range(num_channels):
            multi_sound[i, :] *= (i + 1) * 1.5

        multi_sound_sampled = kaldi.resample_waveform(multi_sound, sample_rate, sample_rate // 2)

        # check that sampling is same whether using separately or in a tensor of size (c, n)
        for i in range(num_channels):
            single_channel = sound * (i + 1) * 1.5
            single_channel_sampled = kaldi.resample_waveform(single_channel, sample_rate, sample_rate // 2)
240
            torch.testing.assert_allclose(multi_sound_sampled[i, :], single_channel_sampled[0], rtol=1e-4, atol=1e-8)
241

Vincent QB's avatar
Vincent QB committed
242

243
244
if __name__ == '__main__':
    unittest.main()