Commit e41c2d93 authored by Gao, Xiang's avatar Gao, Xiang Committed by Farhad Ramezanghorbani
Browse files

Subclass ModuleList to simplify code (#385)

parent 93372134
......@@ -8,7 +8,7 @@ class SpeciesEnergies(NamedTuple):
energies: Tensor
class ANIModel(torch.nn.Module):
class ANIModel(torch.nn.ModuleList):
"""ANI model that compute energies from species and AEVs.
Different atom types might have different modules, when computing
......@@ -27,11 +27,7 @@ class ANIModel(torch.nn.Module):
"""
def __init__(self, modules):
super(ANIModel, self).__init__()
self.module_list = torch.nn.ModuleList(modules)
def __getitem__(self, i):
return self.module_list[i]
super(ANIModel, self).__init__(modules)
def forward(self, species_aev: Tuple[Tensor, Tensor],
cell: Optional[Tensor] = None,
......@@ -44,7 +40,7 @@ class ANIModel(torch.nn.Module):
output = aev.new_zeros(species_.shape)
for i, m in enumerate(self.module_list):
for i, m in enumerate(self):
mask = (species_ == i)
midx = mask.nonzero().flatten()
if midx.shape[0] > 0:
......@@ -54,13 +50,12 @@ class ANIModel(torch.nn.Module):
return SpeciesEnergies(species, torch.sum(output, dim=1))
class Ensemble(torch.nn.Module):
class Ensemble(torch.nn.ModuleList):
"""Compute the average output of an ensemble of modules."""
def __init__(self, modules):
super(Ensemble, self).__init__()
self.modules_list = torch.nn.ModuleList(modules)
self.size = len(self.modules_list)
super(Ensemble, self).__init__(modules)
self.size = len(modules)
def forward(self, species_input: Tuple[Tensor, Tensor],
cell: Optional[Tensor] = None,
......@@ -68,26 +63,22 @@ class Ensemble(torch.nn.Module):
assert cell is None
assert pbc is None
sum_ = 0
for x in self.modules_list:
for x in self:
sum_ += x(species_input)[1]
species, _ = species_input
return SpeciesEnergies(species, sum_ / self.size)
def __getitem__(self, i):
return self.modules_list[i]
class Sequential(torch.nn.Module):
class Sequential(torch.nn.ModuleList):
"""Modified Sequential module that accept Tuple type as input"""
def __init__(self, *modules):
super(Sequential, self).__init__()
self.modules_list = torch.nn.ModuleList(modules)
super(Sequential, self).__init__(modules)
def forward(self, input_: Tuple[Tensor, Tensor],
cell: Optional[Tensor] = None,
pbc: Optional[Tensor] = None):
for module in self.modules_list:
for module in self:
input_ = module(input_, cell=cell, pbc=pbc)
cell = None
pbc = None
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment