Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torchani
Commits
d47d2579
Unverified
Commit
d47d2579
authored
Aug 07, 2019
by
Gao, Xiang
Committed by
GitHub
Aug 07, 2019
Browse files
LR scheduler for SGD (#282)
parent
a2ba46e9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
11 deletions
+18
-11
torchani/neurochem/__init__.py
torchani/neurochem/__init__.py
+18
-11
No files found.
torchani/neurochem/__init__.py
View file @
d47d2579
...
@@ -597,20 +597,25 @@ if sys.version_info[0] > 2:
...
@@ -597,20 +597,25 @@ if sys.version_info[0] > 2:
AdamW_optim
=
AdamW
(
self
.
weights
,
lr
=
self
.
init_lr
)
AdamW_optim
=
AdamW
(
self
.
weights
,
lr
=
self
.
init_lr
)
SGD_optim
=
torch
.
optim
.
SGD
(
self
.
biases
,
lr
=
self
.
init_lr
)
SGD_optim
=
torch
.
optim
.
SGD
(
self
.
biases
,
lr
=
self
.
init_lr
)
scheduler
=
torch
.
optim
.
lr_scheduler
.
ReduceLROnPlateau
(
AdamW_
scheduler
=
torch
.
optim
.
lr_scheduler
.
ReduceLROnPlateau
(
AdamW_optim
,
AdamW_optim
,
factor
=
0.5
,
factor
=
0.5
,
patience
=
100
,
patience
=
100
,
threshold
=
0
)
threshold
=
0
)
SGD_scheduler
=
torch
.
optim
.
lr_scheduler
.
ReduceLROnPlateau
(
SGD_optim
,
factor
=
0.5
,
patience
=
100
,
threshold
=
0
)
while
True
:
while
True
:
rmse
=
self
.
evaluate
(
self
.
validation_set
)
rmse
=
self
.
evaluate
(
self
.
validation_set
)
learning_rate
=
AdamW_optim
.
param_groups
[
0
][
'lr'
]
learning_rate
=
AdamW_optim
.
param_groups
[
0
][
'lr'
]
if
learning_rate
<
self
.
min_lr
or
scheduler
.
last_epoch
>
self
.
nmax
:
if
learning_rate
<
self
.
min_lr
or
AdamW_
scheduler
.
last_epoch
>
self
.
nmax
:
break
break
# checkpoint
# checkpoint
if
scheduler
.
is_better
(
rmse
,
scheduler
.
best
):
if
AdamW_
scheduler
.
is_better
(
rmse
,
AdamW_
scheduler
.
best
):
no_improve_count
=
0
no_improve_count
=
0
torch
.
save
(
self
.
nn
.
state_dict
(),
self
.
model_checkpoint
)
torch
.
save
(
self
.
nn
.
state_dict
(),
self
.
model_checkpoint
)
else
:
else
:
...
@@ -619,17 +624,19 @@ if sys.version_info[0] > 2:
...
@@ -619,17 +624,19 @@ if sys.version_info[0] > 2:
if
no_improve_count
>
self
.
max_nonimprove
:
if
no_improve_count
>
self
.
max_nonimprove
:
break
break
scheduler
.
step
(
rmse
)
AdamW_scheduler
.
step
(
rmse
)
SGD_scheduler
.
step
(
rmse
)
if
self
.
tensorboard
is
not
None
:
if
self
.
tensorboard
is
not
None
:
self
.
tensorboard
.
add_scalar
(
'validation_rmse'
,
rmse
,
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'validation_rmse'
,
rmse
,
AdamW_
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'best_validation_rmse'
,
scheduler
.
best
,
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'best_validation_rmse'
,
AdamW_
scheduler
.
best
,
AdamW_
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'learning_rate'
,
learning_rate
,
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'learning_rate'
,
learning_rate
,
AdamW_
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'no_improve_count_vs_epoch'
,
no_improve_count
,
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'no_improve_count_vs_epoch'
,
no_improve_count
,
AdamW_
scheduler
.
last_epoch
)
for
i
,
(
batch_x
,
batch_y
)
in
self
.
tqdm
(
for
i
,
(
batch_x
,
batch_y
)
in
self
.
tqdm
(
enumerate
(
self
.
training_set
),
enumerate
(
self
.
training_set
),
total
=
len
(
self
.
training_set
),
total
=
len
(
self
.
training_set
),
desc
=
'epoch {}'
.
format
(
scheduler
.
last_epoch
)
desc
=
'epoch {}'
.
format
(
AdamW_
scheduler
.
last_epoch
)
):
):
true_energies
=
batch_y
[
'energies'
]
true_energies
=
batch_y
[
'energies'
]
...
@@ -650,12 +657,12 @@ if sys.version_info[0] > 2:
...
@@ -650,12 +657,12 @@ if sys.version_info[0] > 2:
# write current batch loss to TensorBoard
# write current batch loss to TensorBoard
if
self
.
tensorboard
is
not
None
:
if
self
.
tensorboard
is
not
None
:
self
.
tensorboard
.
add_scalar
(
'batch_loss'
,
loss
,
scheduler
.
last_epoch
*
len
(
self
.
training_set
)
+
i
)
self
.
tensorboard
.
add_scalar
(
'batch_loss'
,
loss
,
AdamW_
scheduler
.
last_epoch
*
len
(
self
.
training_set
)
+
i
)
# log elapsed time
# log elapsed time
elapsed
=
round
(
timeit
.
default_timer
()
-
start
,
2
)
elapsed
=
round
(
timeit
.
default_timer
()
-
start
,
2
)
if
self
.
tensorboard
is
not
None
:
if
self
.
tensorboard
is
not
None
:
self
.
tensorboard
.
add_scalar
(
'time_vs_epoch'
,
elapsed
,
scheduler
.
last_epoch
)
self
.
tensorboard
.
add_scalar
(
'time_vs_epoch'
,
elapsed
,
AdamW_
scheduler
.
last_epoch
)
__all__
=
[
'Constants'
,
'load_sae'
,
'load_model'
,
'load_model_ensemble'
,
'Trainer'
]
__all__
=
[
'Constants'
,
'load_sae'
,
'load_model'
,
'load_model_ensemble'
,
'Trainer'
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment