Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torchani
Commits
d07bd02c
Unverified
Commit
d07bd02c
authored
Jul 31, 2018
by
Gao, Xiang
Committed by
GitHub
Jul 31, 2018
Browse files
add tqdm and tensorboard support on example (#35)
parent
f6b193bd
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
59 additions
and
13 deletions
+59
-13
.gitignore
.gitignore
+2
-0
Dockerfile
Dockerfile
+2
-1
examples/nnp_training.py
examples/nnp_training.py
+38
-12
examples/training-benchmark.py
examples/training-benchmark.py
+17
-0
No files found.
.gitignore
View file @
d07bd02c
...
...
@@ -14,3 +14,5 @@ a.out
.ipynb_checkpoints
benchmark_xyz
*.pyc
*checkpoint*
/runs
\ No newline at end of file
Dockerfile
View file @
d07bd02c
FROM
zasdfgbnm/pytorch-master
RUN
pacman
-Sy
--noconfirm
python-sphinx python2-sphinx flake8
RUN
pacman
-Sy
--noconfirm
python-sphinx python2-sphinx python-tqdm python2-tqdm flake8
RUN
pip
install
tensorboardX
&&
pip2
install
tensorboardX
COPY
. /torchani
RUN
cd
torchani
&&
pip
install
.
RUN
cd
torchani
&&
pip2
install
.
examples/nnp_training.py
View file @
d07bd02c
...
...
@@ -3,12 +3,20 @@ import torch
import
ignite
import
torchani
import
model
import
tqdm
import
timeit
import
tensorboardX
import
math
chunk_size
=
256
batch_chunks
=
4
dataset_path
=
sys
.
argv
[
1
]
dataset_checkpoint
=
'dataset-checkpoint.dat'
model_checkpoint
=
'checkpoint.pt'
max_epochs
=
10
writer
=
tensorboardX
.
SummaryWriter
()
start
=
timeit
.
default_timer
()
shift_energy
=
torchani
.
EnergyShifter
()
training
,
validation
,
testing
=
torchani
.
data
.
load_or_create
(
...
...
@@ -40,26 +48,44 @@ evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
})
def
hartree2kcal
(
x
):
return
627.509
*
x
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
def
init_tqdm
(
trainer
):
trainer
.
state
.
tqdm
=
tqdm
.
tqdm
(
total
=
len
(
training
),
desc
=
'epoch'
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
ITERATION_COMPLETED
)
def
log_training_loss
(
trainer
):
print
(
"Epoch[{}] Loss: {:.2f}"
.
format
(
trainer
.
state
.
epoch
,
trainer
.
state
.
output
))
def
update_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
update
(
1
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_COMPLETED
)
def
log_training_results
(
trainer
):
evaluator
.
run
(
training
)
metrics
=
evaluator
.
state
.
metrics
print
(
"Training Results - Epoch: {} RMSE: {:.2f}"
.
format
(
trainer
.
state
.
epoch
,
metrics
[
'RMSE'
]))
def
finalize_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
close
()
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_
COMPLE
TED
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_
STAR
TED
)
def
log_validation_results
(
trainer
):
evaluator
.
run
(
validation
)
metrics
=
evaluator
.
state
.
metrics
print
(
"Validation Results - Epoch: {} RMSE: {:.2f}"
.
format
(
trainer
.
state
.
epoch
,
metrics
[
'RMSE'
]))
rmse
=
hartree2kcal
(
metrics
[
'RMSE'
])
writer
.
add_scalar
(
'validation_rmse_vs_epoch'
,
rmse
,
trainer
.
state
.
epoch
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
def
log_time
(
trainer
):
elapsed
=
round
(
timeit
.
default_timer
()
-
start
,
2
)
writer
.
add_scalar
(
'time_vs_epoch'
,
elapsed
,
trainer
.
state
.
epoch
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
ITERATION_COMPLETED
)
def
log_loss_and_time
(
trainer
):
iteration
=
trainer
.
state
.
iteration
rmse
=
hartree2kcal
(
math
.
sqrt
(
trainer
.
state
.
output
))
writer
.
add_scalar
(
'training_rmse_vs_iteration'
,
rmse
,
iteration
)
trainer
.
run
(
training
,
max_epochs
=
10
)
trainer
.
run
(
training
,
max_epochs
=
max_epochs
)
examples/training-benchmark.py
View file @
d07bd02c
...
...
@@ -4,6 +4,7 @@ import ignite
import
torchani
import
timeit
import
model
import
tqdm
chunk_size
=
256
batch_chunks
=
4
...
...
@@ -33,6 +34,22 @@ optimizer = torch.optim.Adam(nnp.parameters())
trainer
=
ignite
.
engine
.
create_supervised_trainer
(
container
,
optimizer
,
torchani
.
ignite
.
energy_mse_loss
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
def
init_tqdm
(
trainer
):
trainer
.
state
.
tqdm
=
tqdm
.
tqdm
(
total
=
len
(
dataloader
),
desc
=
'epoch'
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
ITERATION_COMPLETED
)
def
update_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
update
(
1
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_COMPLETED
)
def
finalize_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
close
()
start
=
timeit
.
default_timer
()
trainer
.
run
(
dataloader
,
max_epochs
=
1
)
elapsed
=
round
(
timeit
.
default_timer
()
-
start
,
2
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment