training-benchmark.py 6.22 KB
Newer Older
Xiang Gao's avatar
Xiang Gao committed
1
2
import torch
import torchani
3
import time
Xiang Gao's avatar
Xiang Gao committed
4
import timeit
5
import argparse
6
import pkbar
Ignacio Pickering's avatar
Ignacio Pickering committed
7
from torchani.units import hartree2kcalmol
Gao, Xiang's avatar
Gao, Xiang committed
8

9
10
synchronize = False

11
12
13
14
15
16
17
18
19
H_network = torch.nn.Sequential(
    torch.nn.Linear(384, 160),
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)
Gao, Xiang's avatar
Gao, Xiang committed
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
C_network = torch.nn.Sequential(
    torch.nn.Linear(384, 144),
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)
Gao, Xiang's avatar
Gao, Xiang committed
50
51


52
53
54
55
56
57
def time_func(key, func):
    timers[key] = 0

    def wrapper(*args, **kwargs):
        start = timeit.default_timer()
        ret = func(*args, **kwargs)
58
59
        if synchronize:
            torch.cuda.synchronize()
60
61
62
63
64
65
66
        end = timeit.default_timer()
        timers[key] += end - start
        return ret

    return wrapper


67
68
69
70
71
72
73
74
75
76
77
78
if __name__ == "__main__":
    # parse command line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('dataset_path',
                        help='Path of the dataset, can a hdf5 file \
                            or a directory containing hdf5 files')
    parser.add_argument('-d', '--device',
                        help='Device of modules and tensors',
                        default=('cuda' if torch.cuda.is_available() else 'cpu'))
    parser.add_argument('-b', '--batch_size',
                        help='Number of conformations of each batch',
                        default=2560, type=int)
79
80
81
    parser.add_argument('-y', '--synchronize',
                        action='store_true',
                        help='whether to insert torch.cuda.synchronize() at the end of each function')
82
83
84
85
86
    parser.add_argument('-n', '--num_epochs',
                        help='epochs',
                        default=1, type=int)
    parser = parser.parse_args()

87
88
89
    if parser.synchronize:
        synchronize = True

90
91
92
93
94
95
96
97
98
99
100
    Rcr = 5.2000e+00
    Rca = 3.5000e+00
    EtaR = torch.tensor([1.6000000e+01], device=parser.device)
    ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=parser.device)
    Zeta = torch.tensor([3.2000000e+01], device=parser.device)
    ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=parser.device)
    EtaA = torch.tensor([8.0000000e+00], device=parser.device)
    ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=parser.device)
    num_species = 4
    aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)

101
    nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
102
103
104
105
106
107
108
109
110
111
112
    model = torch.nn.Sequential(aev_computer, nn).to(parser.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.000001)
    mse = torch.nn.MSELoss(reduction='none')
    timers = {}

    # enable timers
    torchani.aev.cutoff_cosine = time_func('torchani.aev.cutoff_cosine', torchani.aev.cutoff_cosine)
    torchani.aev.radial_terms = time_func('torchani.aev.radial_terms', torchani.aev.radial_terms)
    torchani.aev.angular_terms = time_func('torchani.aev.angular_terms', torchani.aev.angular_terms)
    torchani.aev.compute_shifts = time_func('torchani.aev.compute_shifts', torchani.aev.compute_shifts)
    torchani.aev.neighbor_pairs = time_func('torchani.aev.neighbor_pairs', torchani.aev.neighbor_pairs)
113
    torchani.aev.neighbor_pairs_nopbc = time_func('torchani.aev.neighbor_pairs_nopbc', torchani.aev.neighbor_pairs_nopbc)
114
115
116
117
118
119
120
    torchani.aev.triu_index = time_func('torchani.aev.triu_index', torchani.aev.triu_index)
    torchani.aev.cumsum_from_zero = time_func('torchani.aev.cumsum_from_zero', torchani.aev.cumsum_from_zero)
    torchani.aev.triple_by_molecule = time_func('torchani.aev.triple_by_molecule', torchani.aev.triple_by_molecule)
    torchani.aev.compute_aev = time_func('torchani.aev.compute_aev', torchani.aev.compute_aev)
    model[0].forward = time_func('total', model[0].forward)
    model[1].forward = time_func('forward', model[1].forward)

121
122
123
    print('=> loading dataset...')
    shifter = torchani.EnergyShifter(None)
    dataset = list(torchani.data.load(parser.dataset_path).subtract_self_energies(shifter).species_to_indices().shuffle().collate(parser.batch_size))
124
125
126
127
128
129
130
131
132

    print('=> start training')
    start = time.time()

    for epoch in range(0, parser.num_epochs):

        print('Epoch: %d/%d' % (epoch + 1, parser.num_epochs))
        progbar = pkbar.Kbar(target=len(dataset) - 1, width=8)

133
134
135
136
137
138
        for i, properties in enumerate(dataset):
            species = properties['species'].to(parser.device)
            coordinates = properties['coordinates'].to(parser.device).float()
            true_energies = properties['energies'].to(parser.device).float()
            num_atoms = (species >= 0).sum(dim=1, dtype=true_energies.dtype)
            _, predicted_energies = model((species, coordinates))
139
            loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
Ignacio Pickering's avatar
Ignacio Pickering committed
140
            rmse = hartree2kcalmol((mse(predicted_energies, true_energies)).mean()).detach().cpu().numpy()
141
142
143
144
            loss.backward()
            optimizer.step()

            progbar.update(i, values=[("rmse", rmse)])
145
146
    if synchronize:
        torch.cuda.synchronize()
147
148
149
150
151
152
153
154
155
    stop = time.time()

    print('=> more detail about benchmark')
    for k in timers:
        if k.startswith('torchani.'):
            print('{} - {:.1f}s'.format(k, timers[k]))
    print('Total AEV - {:.1f}s'.format(timers['total']))
    print('NN - {:.1f}s'.format(timers['forward']))
    print('Epoch time - {:.1f}s'.format(stop - start))