nnp_training.py 8.28 KB
Newer Older
Gao, Xiang's avatar
Gao, Xiang committed
1
2
# -*- coding: utf-8 -*-
"""
Gao, Xiang's avatar
Gao, Xiang committed
3
4
.. _training-example:

Gao, Xiang's avatar
Gao, Xiang committed
5
6
7
8
9
10
11
12
Train Your Own Neural Network Potential
=======================================

This example shows how to use TorchANI train your own neural network potential.
"""

###############################################################################
# To begin with, let's first import the modules we will use:
13
14
15
import torch
import ignite
import torchani
16
17
import timeit
import tensorboardX
Gao, Xiang's avatar
Gao, Xiang committed
18
import os
19
import ignite.contrib.handlers
Gao, Xiang's avatar
Gao, Xiang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86


###############################################################################
# Now let's setup training hyperparameters. Note that here for our demo purpose
# , we set both training set and validation set the ``ani_gdb_s01.h5`` in
# TorchANI's repository. This allows this program to finish very quick, because
# that dataset is very small. But this is wrong and should be avoided for any
# serious training. These paths assumes the user run this script under the
# ``examples`` directory of TorchANI's repository. If you download this script,
# you should manually set the path of these files in your system before this
# script can run successfully.

# training and validation set
try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
training_path = os.path.join(path, '../dataset/ani_gdb_s01.h5')
validation_path = os.path.join(path, '../dataset/ani_gdb_s01.h5')

# checkpoint file to save model when validation RMSE improves
model_checkpoint = 'model.pt'

# max epochs to run the training
max_epochs = 20

# Compute training RMSE every this steps. Since the training set is usually
# huge and the loss funcition does not directly gives us RMSE, we need to
# check the training RMSE to see overfitting.
training_rmse_every = 5

# device to run the training
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# batch size
batch_size = 1024

# log directory for tensorboardX
log = 'runs'


###############################################################################
# Now let's read our constants and self energies from constant files and
# construct AEV computer.
const_file = os.path.join(path, '../torchani/resources/ani-1x_dft_x8ens/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
sae_file = os.path.join(path, '../torchani/resources/ani-1x_dft_x8ens/sae_linfit.dat')  # noqa: E501
consts = torchani.neurochem.Constants(const_file)
aev_computer = torchani.AEVComputer(**consts)
energy_shifter = torchani.neurochem.load_sae(sae_file)


###############################################################################
# Now let's define atomic neural networks. Here in this demo, we use the same
# size of neural network for all atom types, but this is not necessary.
def atomic():
    model = torch.nn.Sequential(
        torch.nn.Linear(384, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 64),
        torch.nn.CELU(0.1),
        torch.nn.Linear(64, 1)
    )
    return model


Gao, Xiang's avatar
Gao, Xiang committed
87
88
89
90
91
92
93
94
95
nn = torchani.ANIModel([atomic() for _ in range(4)])
print(nn)

###############################################################################
# If checkpoint from previous training exists, then load it.
if os.path.isfile(model_checkpoint):
    nn.load_state_dict(torch.load(model_checkpoint))
else:
    torch.save(nn.state_dict(), model_checkpoint)
Gao, Xiang's avatar
Gao, Xiang committed
96

97
model = torch.nn.Sequential(aev_computer, nn).to(device)
Gao, Xiang's avatar
Gao, Xiang committed
98
99
100
101
102
103
104
105
106
107
108
109

###############################################################################
# Now setup tensorboardX.
writer = tensorboardX.SummaryWriter(log_dir=log)

###############################################################################
# Now load training and validation datasets into memory. Note that we need to
# subtracting energies by the self energies of all atoms for each molecule.
# This makes the range of energies in a reasonable range. The second argument
# defines how to convert species as a list of string to tensor, that is, for
# all supported chemical symbols, which is correspond to ``0``, which
# correspond to ``1``, etc.
110
training = torchani.data.BatchedANIDataset(
Gao, Xiang's avatar
Gao, Xiang committed
111
112
    training_path, consts.species_to_tensor, batch_size, device=device,
    transform=[energy_shifter.subtract_from_dataset])
113

Gao, Xiang's avatar
Gao, Xiang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
validation = torchani.data.BatchedANIDataset(
    validation_path, consts.species_to_tensor, batch_size, device=device,
    transform=[energy_shifter.subtract_from_dataset])

###############################################################################
# When iterating the dataset, we will get pairs of input and output
# ``(species_coordinates, properties)``, where ``species_coordinates`` is the
# input and ``properties`` is the output.
#
# ``species_coordinates`` is a list of species-coordinate pairs, with shape
# ``(N, Na)`` and ``(N, Na, 3)``. The reason for getting this type is, when
# loading the dataset and generating minibatches, the whole dataset are
# shuffled and each minibatch contains structures of molecules with a wide
# range of number of atoms. Molecules of different number of atoms are batched
# into single by padding. The way padding works is: adding ghost atoms, with
# species 'X', and do computations as if they were normal atoms. But when
# computing AEVs, atoms with species `X` would be ignored. To avoid computation
# wasting on padding atoms, minibatches are further splitted into chunks. Each
# chunk contains structures of molecules of similar size, which minimize the
# total number of padding atoms required to add. The input list
# ``species_coordinates`` contains chunks of that minibatch we are getting. The
# batching and chunking happens automatically, so the user does not need to
# worry how to construct chunks, but the user need to compute the energies for
# each chunk and concat them into single tensor.
#
# The output, i.e. ``properties`` is a dictionary holding each property. This
# allows us to extend TorchANI in the future to training forces and properties.
#
# We have tools to deal with these data types at :attr:`torchani.ignite` that
# allow us to easily combine the dataset with pytorch ignite. These tools can
# be used as follows:
container = torchani.ignite.Container({'energies': model})
optimizer = torch.optim.Adam(model.parameters())
147
trainer = ignite.engine.create_supervised_trainer(
148
    container, optimizer, torchani.ignite.MSELoss('energies'))
149
evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
150
        'RMSE': torchani.ignite.RMSEMetric('energies')
151
152
153
    })


Gao, Xiang's avatar
Gao, Xiang committed
154
###############################################################################
155
156
157
# Let's add a progress bar for the trainer
pbar = ignite.contrib.handlers.ProgressBar()
pbar.attach(trainer)
158
159


Gao, Xiang's avatar
Gao, Xiang committed
160
161
162
163
164
165
###############################################################################
# And some event handlers to compute validation and training metrics:
def hartree2kcal(x):
    return 627.509 * x


166
@trainer.on(ignite.engine.Events.EPOCH_STARTED)
167
def validation_and_checkpoint(trainer):
168
169
170
171
172
173
174
175
176
177
178
179
    def evaluate(dataset, name):
        evaluator = ignite.engine.create_supervised_evaluator(
            container,
            metrics={
                'RMSE': torchani.ignite.RMSEMetric('energies')
            }
        )
        evaluator.run(dataset)
        metrics = evaluator.state.metrics
        rmse = hartree2kcal(metrics['RMSE'])
        writer.add_scalar(name, rmse, trainer.state.epoch)

180
    # compute validation RMSE
Gao, Xiang's avatar
Gao, Xiang committed
181
    evaluate(validation, 'validation_rmse_vs_epoch')
182
183

    # compute training RMSE
Gao, Xiang's avatar
Gao, Xiang committed
184
    if trainer.state.epoch % training_rmse_every == 1:
185
        evaluate(training, 'training_rmse_vs_epoch')
186

Gao, Xiang's avatar
Gao, Xiang committed
187
188
189
    # checkpoint model
    torch.save(nn.state_dict(), model_checkpoint)

190

Gao, Xiang's avatar
Gao, Xiang committed
191
192
193
###############################################################################
# Also some to log elapsed time:
start = timeit.default_timer()
194
195
196
197
198
199
200
201


@trainer.on(ignite.engine.Events.EPOCH_STARTED)
def log_time(trainer):
    elapsed = round(timeit.default_timer() - start, 2)
    writer.add_scalar('time_vs_epoch', elapsed, trainer.state.epoch)


Gao, Xiang's avatar
Gao, Xiang committed
202
203
###############################################################################
# Also log the loss per iteration:
204
@trainer.on(ignite.engine.Events.ITERATION_COMPLETED)
Gao, Xiang's avatar
Gao, Xiang committed
205
def log_loss(trainer):
206
    iteration = trainer.state.iteration
207
    writer.add_scalar('loss_vs_iteration', trainer.state.output, iteration)
208
209


Gao, Xiang's avatar
Gao, Xiang committed
210
211
212
###############################################################################
# And finally, we are ready to run:
trainer.run(training, max_epochs)