cache_aev.py 5.77 KB
Newer Older
Gao, Xiang's avatar
Gao, Xiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# -*- coding: utf-8 -*-
"""
Use Disk Cache of AEV to Boost Training
=======================================

In the previous :ref:`training-example` example, AEVs are computed everytime
when needed. This is not very efficient because the AEVs actually never change
during training. If one has a good SSD, it would be beneficial to cache these
AEVs.  This example shows how to use disk cache to boost training
"""

###############################################################################
# Most part of the codes in this example are line by line copy of
# :ref:`training-example`.
import torch
import ignite
import torchani
import timeit
import tensorboardX
import os
21
import ignite.contrib.handlers
Gao, Xiang's avatar
Gao, Xiang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


# training and validation set
try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
training_path = os.path.join(path, '../dataset/ani_gdb_s01.h5')
validation_path = os.path.join(path, '../dataset/ani_gdb_s01.h5')

# checkpoint file to save model when validation RMSE improves
model_checkpoint = 'model.pt'

# max epochs to run the training
max_epochs = 20

# Compute training RMSE every this steps. Since the training set is usually
# huge and the loss funcition does not directly gives us RMSE, we need to
# check the training RMSE to see overfitting.
training_rmse_every = 5

# device to run the training
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# batch size
batch_size = 1024

# log directory for tensorboardX
log = 'runs'

###############################################################################
# Here, there is no need to manually construct aev computer and energy shifter,
# but we do need to generate a disk cache for datasets
const_file = os.path.join(path, '../torchani/resources/ani-1x_dft_x8ens/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
sae_file = os.path.join(path, '../torchani/resources/ani-1x_dft_x8ens/sae_linfit.dat')  # noqa: E501
training_cache = './training_cache'
validation_cache = './validation_cache'

# If the cache dirs already exists, then we assume these data has already been
# cached and skip the generation part.
if not os.path.exists(training_cache):
    torchani.data.cache_aev(training_cache, training_path, batch_size, device,
                            const_file, True, sae_file)
if not os.path.exists(validation_cache):
    torchani.data.cache_aev(validation_cache, validation_path, batch_size,
                            device, const_file, True, sae_file)


###############################################################################
# The codes that define the network are also the same
def atomic():
    model = torch.nn.Sequential(
        torch.nn.Linear(384, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 64),
        torch.nn.CELU(0.1),
        torch.nn.Linear(64, 1)
    )
    return model


nn = torchani.ANIModel([atomic() for _ in range(4)])
print(nn)

if os.path.isfile(model_checkpoint):
    nn.load_state_dict(torch.load(model_checkpoint))
else:
    torch.save(nn.state_dict(), model_checkpoint)


###############################################################################
# Except that at here we do not include aev computer into our pipeline, because
# the cache loader will load computed AEVs from disk.
97
model = nn.to(device)
Gao, Xiang's avatar
Gao, Xiang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

###############################################################################
# This part is also a line by line copy
writer = tensorboardX.SummaryWriter(log_dir=log)

###############################################################################
# Here we don't need to construct :class:`torchani.data.BatchedANIDataset`
# object, but instead an object of :class:`torchani.data.AEVCacheLoader`
training = torchani.data.AEVCacheLoader(training_cache)
validation = torchani.data.AEVCacheLoader(validation_cache)

###############################################################################
# The rest of the code are again the same
training = torchani.data.AEVCacheLoader(training_cache)
container = torchani.ignite.Container({'energies': model})
optimizer = torch.optim.Adam(model.parameters())
trainer = ignite.engine.create_supervised_trainer(
    container, optimizer, torchani.ignite.MSELoss('energies'))
evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
        'RMSE': torchani.ignite.RMSEMetric('energies')
    })


121
122
123
124
###############################################################################
# Let's add a progress bar for the trainer
pbar = ignite.contrib.handlers.ProgressBar()
pbar.attach(trainer)
Gao, Xiang's avatar
Gao, Xiang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


def hartree2kcal(x):
    return 627.509 * x


@trainer.on(ignite.engine.Events.EPOCH_STARTED)
def validation_and_checkpoint(trainer):
    def evaluate(dataset, name):
        evaluator = ignite.engine.create_supervised_evaluator(
            container,
            metrics={
                'RMSE': torchani.ignite.RMSEMetric('energies')
            }
        )
        evaluator.run(dataset)
        metrics = evaluator.state.metrics
        rmse = hartree2kcal(metrics['RMSE'])
        writer.add_scalar(name, rmse, trainer.state.epoch)

    # compute validation RMSE
    evaluate(validation, 'validation_rmse_vs_epoch')

    # compute training RMSE
    if trainer.state.epoch % training_rmse_every == 1:
        evaluate(training, 'training_rmse_vs_epoch')

    # checkpoint model
    torch.save(nn.state_dict(), model_checkpoint)


start = timeit.default_timer()


@trainer.on(ignite.engine.Events.EPOCH_STARTED)
def log_time(trainer):
    elapsed = round(timeit.default_timer() - start, 2)
    writer.add_scalar('time_vs_epoch', elapsed, trainer.state.epoch)


@trainer.on(ignite.engine.Events.ITERATION_COMPLETED)
def log_loss(trainer):
    iteration = trainer.state.iteration
    writer.add_scalar('loss_vs_iteration', trainer.state.output, iteration)


trainer.run(training, max_epochs)