batch-gradient-variance.py 2.04 KB
Newer Older
Xiang Gao's avatar
Xiang Gao committed
1
2
3
4
5
6
7
import sys
import torch
import torchani
import configs
import torchani.data
from tqdm import tqdm
import pickle
8
from common import get_or_create_model, Averager, evaluate
Xiang Gao's avatar
Xiang Gao committed
9

10
device = configs.device
Xiang Gao's avatar
Xiang Gao committed
11
if len(sys.argv) >= 2:
12
    device = torch.device(sys.argv[1])
Xiang Gao's avatar
Xiang Gao committed
13
14

ds = torchani.data.load_dataset(configs.data_path)
15
model = get_or_create_model('/tmp/model.pt', device=device)
Xiang Gao's avatar
Xiang Gao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# just to conveniently zero grads
optimizer = torch.optim.Adam(model.parameters())


def grad_or_zero(parameter):
    if parameter.grad is not None:
        return parameter.grad.reshape(-1)
    else:
        return torch.zeros_like(parameter.reshape(-1))


def batch_gradient(batch):
    a = Averager()
    for molecule_id in batch:
        _species = ds.species[molecule_id]
        coordinates, energies = batch[molecule_id]
32
33
        coordinates = coordinates.to(model.aev_computer.device)
        energies = energies.to(model.aev_computer.device)
Xiang Gao's avatar
Xiang Gao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        a.add(*evaluate(coordinates, energies, _species))
    mse = a.avg()
    optimizer.zero_grad()
    mse.backward()
    grads = [grad_or_zero(p) for p in model.parameters()]
    grads = torch.cat(grads)
    return grads


def compute(chunk_size, batch_chunks):
    sampler = torchani.data.BatchSampler(ds, chunk_size, batch_chunks)
    dataloader = torch.utils.data.DataLoader(
        ds, batch_sampler=sampler, collate_fn=torchani.data.collate)

    model_file = 'data/model.pt'
    model.load_state_dict(torch.load(
        model_file, map_location=lambda storage, loc: storage))

    ag = Averager()  # avg(grad)
    agsqr = Averager()  # avg(grad^2)
    for batch in tqdm(dataloader, total=len(sampler)):
        g = batch_gradient(batch)
        ag.add(1, g)
        agsqr.add(1, g**2)
    ag = ag.avg()
    agsqr = agsqr.avg()
60
61
    filename = 'data/avg-{}-{}.dat'.format(chunk_size, batch_chunks)
    with open(filename, 'wb') as f:
Xiang Gao's avatar
Xiang Gao committed
62
63
64
65
66
67
68
69
        pickle.dump((ag, agsqr), f)


chunk_size = int(sys.argv[2])
batch_chunks = int(sys.argv[3])
compute(chunk_size, batch_chunks)
# for chunk_size, batch_chunks in hyperparams:
#     compute(chunk_size, batch_chunks)