test_ase.py 2.96 KB
Newer Older
Gao, Xiang's avatar
Gao, Xiang committed
1
2
from ase.lattice.cubic import Diamond
from ase.md.langevin import Langevin
Gao, Xiang's avatar
Gao, Xiang committed
3
from ase import units, Atoms
Gao, Xiang's avatar
Gao, Xiang committed
4
5
6
7
from ase.calculators.test import numeric_force
import torch
import torchani
import unittest
Gao, Xiang's avatar
Gao, Xiang committed
8
import numpy
Gao, Xiang's avatar
Gao, Xiang committed
9
10
11
12
13
14
15
16
17
18
19
20


def get_numeric_force(atoms, eps):
    fn = torch.zeros((len(atoms), 3))
    for i in range(len(atoms)):
        for j in range(3):
            fn[i, j] = numeric_force(atoms, i, j, eps)
    return fn


class TestASE(unittest.TestCase):

Gao, Xiang's avatar
Gao, Xiang committed
21
22
    def _testForce(self, pbc):
        atoms = Diamond(symbol="C", pbc=pbc)
Gao, Xiang's avatar
Gao, Xiang committed
23
24
25
26
27
28
29
30
31
32
33
        builtin = torchani.neurochem.Builtins()
        calculator = torchani.ase.Calculator(
            builtin.species, builtin.aev_computer,
            builtin.models, builtin.energy_shifter)
        atoms.set_calculator(calculator)
        dyn = Langevin(atoms, 5 * units.fs, 30000000 * units.kB, 0.002)
        dyn.run(100)
        f = torch.from_numpy(atoms.get_forces())
        fn = get_numeric_force(atoms, 0.001)
        df = (f - fn).abs().max()
        avgf = f.abs().mean()
Gao, Xiang's avatar
Gao, Xiang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        if avgf > 0:
            self.assertLess(df / avgf, 0.1)

    def testForceWithPBCEnabled(self):
        self._testForce(True)

    def testForceWithPBCDisabled(self):
        self._testForce(False)

    def testForceAgainstDefaultNeighborList(self):
        atoms = Diamond(symbol="C", pbc=False)
        builtin = torchani.neurochem.Builtins()

        calculator = torchani.ase.Calculator(
            builtin.species, builtin.aev_computer,
            builtin.models, builtin.energy_shifter)
        default_neighborlist_calculator = torchani.ase.Calculator(
            builtin.species, builtin.aev_computer,
            builtin.models, builtin.energy_shifter, True)

        atoms.set_calculator(calculator)
        dyn = Langevin(atoms, 5 * units.fs, 50 * units.kB, 0.002)

        def test_energy(a=atoms):
            a = a.copy()
            a.set_calculator(calculator)
            e1 = a.get_potential_energy()
            a.set_calculator(default_neighborlist_calculator)
            e2 = a.get_potential_energy()
            self.assertEqual(e1, e2)

        dyn.attach(test_energy, interval=1)
        dyn.run(500)

    def testTranslationalInvariancePBC(self):
        atoms = Atoms('CH4', [[0, 0, 0],
                              [1, 0, 0],
                              [0, 1, 0],
                              [0, 0, 1],
                              [0, 1, 1]],
                      cell=[2, 2, 2], pbc=True)

        builtin = torchani.neurochem.Builtins()
        calculator = torchani.ase.Calculator(
            builtin.species, builtin.aev_computer,
            builtin.models, builtin.energy_shifter)
        atoms.set_calculator(calculator)
        e = atoms.get_potential_energy()

        for _ in range(100):
            positions = atoms.get_positions()
            translation = (numpy.random.rand(3) - 0.5) * 2
            atoms.set_positions(positions + translation)
            self.assertEqual(e, atoms.get_potential_energy())
Gao, Xiang's avatar
Gao, Xiang committed
88
89
90
91


if __name__ == '__main__':
    unittest.main()