test_cuaev.py 16.6 KB
Newer Older
1
2
import os
import torch
3
4
import torchani
import unittest
5
import pickle
6
import copy
Gao, Xiang's avatar
Gao, Xiang committed
7
from torchani.testing import TestCase, make_tensor
8

9
10
path = os.path.dirname(os.path.realpath(__file__))

11
12
skipIfNoGPU = unittest.skipIf(not torch.cuda.is_available(), 'There is no device to run this test')
skipIfNoMultiGPU = unittest.skipIf(not torch.cuda.device_count() >= 2, 'There is not enough GPU devices to run this test')
13
skipIfNoCUAEV = unittest.skipIf(not torchani.aev.has_cuaev, "only valid when cuaev is installed")
14
15


16
@skipIfNoCUAEV
Gao, Xiang's avatar
Gao, Xiang committed
17
class TestCUAEVNoGPU(TestCase):
18

Gao, Xiang's avatar
Gao, Xiang committed
19
    def testSimple(self):
20
        def f(coordinates, species, Rcr: float, Rca: float, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species: int):
21
22
            cuaev_computer = torch.classes.cuaev.CuaevComputer(Rcr, Rca, EtaR.flatten(), ShfR.flatten(), EtaA.flatten(), Zeta.flatten(), ShfA.flatten(), ShfZ.flatten(), num_species)
            return torch.ops.cuaev.run(coordinates, species, cuaev_computer)
23
        s = torch.jit.script(f)
24
        self.assertIn("cuaev::run", str(s.graph))
25

Gao, Xiang's avatar
Gao, Xiang committed
26
27
28
29
30
31
32
33
34
    def testAEVComputer(self):
        path = os.path.dirname(os.path.realpath(__file__))
        const_file = os.path.join(path, '../torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
        consts = torchani.neurochem.Constants(const_file)
        aev_computer = torchani.AEVComputer(**consts, use_cuda_extension=True)
        s = torch.jit.script(aev_computer)
        # Computation of AEV using cuaev when there is no atoms does not require CUDA, and can be run without GPU
        species = make_tensor((8, 0), 'cpu', torch.int64, low=-1, high=4)
        coordinates = make_tensor((8, 0, 3), 'cpu', torch.float32, low=-5, high=5)
35
        self.assertIn("cuaev::run", str(s.graph_for((species, coordinates))))
Gao, Xiang's avatar
Gao, Xiang committed
36
37
38


@skipIfNoGPU
39
@skipIfNoCUAEV
Gao, Xiang's avatar
Gao, Xiang committed
40
class TestCUAEV(TestCase):
41

42
    def setUp(self, device='cuda:0'):
43
        self.tolerance = 5e-5
44
        self.device = device
45
46
47
48
49
50
51
52
53
54
55
        Rcr = 5.2000e+00
        Rca = 3.5000e+00
        EtaR = torch.tensor([1.6000000e+01], device=self.device)
        ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=self.device)
        Zeta = torch.tensor([3.2000000e+01], device=self.device)
        ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=self.device)
        EtaA = torch.tensor([8.0000000e+00], device=self.device)
        ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=self.device)
        num_species = 4
        self.aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
        self.cuaev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species, use_cuda_extension=True)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        self.nn = torch.nn.Sequential(torch.nn.Linear(384, 1, False)).to(self.device)
        self.radial_length = self.aev_computer.radial_length

    def _double_backward_1_test(self, species, coordinates):

        def double_backward(aev_computer, species, coordinates):
            torch.manual_seed(12345)
            self.nn.zero_grad()
            _, aev = aev_computer((species, coordinates))
            E = self.nn(aev).sum()
            force = -torch.autograd.grad(E, coordinates, create_graph=True, retain_graph=True)[0]
            force_true = torch.randn_like(force)
            loss = torch.abs(force_true - force).sum(dim=(1, 2)).mean()
            loss.backward()
            param = next(self.nn.parameters())
            param_grad = copy.deepcopy(param.grad)
            return aev, force, param_grad

        aev, force_ref, param_grad_ref = double_backward(self.aev_computer, species, coordinates)
        cu_aev, force_cuaev, param_grad = double_backward(self.cuaev_computer, species, coordinates)

        self.assertEqual(cu_aev, aev, f'cu_aev: {cu_aev}\n aev: {aev}')
        self.assertEqual(force_cuaev, force_ref, f'\nforce_cuaev: {force_cuaev}\n force_ref: {force_ref}')
        self.assertEqual(param_grad, param_grad_ref, f'\nparam_grad: {param_grad}\n param_grad_ref: {param_grad_ref}', atol=5e-5, rtol=5e-5)

    def _double_backward_2_test(self, species, coordinates):

        def double_backward(aev_computer, species, coordinates):
            """
            # We want to get the gradient of `grad_aev`, which requires `grad_aev` to be a leaf node
            # due to `torch.autograd`'s limitation. So we split the coord->aev->energy graph into two separate
            # graphs: coord->aev and aev->energy, so that aev and grad_aev are now leaves.
            """
            torch.manual_seed(12345)
            # graph1 input -> aev
            coordinates = coordinates.clone().detach().requires_grad_()
            _, aev = aev_computer((species, coordinates))
            # graph2 aev -> E
            aev_ = aev.clone().detach().requires_grad_()
            E = self.nn(aev_).sum()
            # graph2 backward
            aev_grad = torch.autograd.grad(E, aev_, create_graph=True, retain_graph=True)[0]
            # graph1 backward
            aev_grad_ = aev_grad.clone().detach().requires_grad_()
            force = torch.autograd.grad(aev, coordinates, aev_grad_, create_graph=True, retain_graph=True)[0]
            # force loss backward
            force_true = torch.randn_like(force)
            loss = torch.abs(force_true - force).sum(dim=(1, 2)).mean()
            aev_grad_grad = torch.autograd.grad(loss, aev_grad_, create_graph=True, retain_graph=True)[0]

            return aev, force, aev_grad_grad

        aev, force_ref, aev_grad_grad = double_backward(self.aev_computer, species, coordinates)
        cu_aev, force_cuaev, cuaev_grad_grad = double_backward(self.cuaev_computer, species, coordinates)

        self.assertEqual(cu_aev, aev, f'cu_aev: {cu_aev}\n aev: {aev}', atol=5e-5, rtol=5e-5)
        self.assertEqual(force_cuaev, force_ref, f'\nforce_cuaev: {force_cuaev}\n force_ref: {force_ref}', atol=5e-5, rtol=5e-5)
        self.assertEqual(cuaev_grad_grad, aev_grad_grad, f'\ncuaev_grad_grad: {cuaev_grad_grad}\n aev_grad_grad: {aev_grad_grad}', atol=5e-5, rtol=5e-5)
114
115
116
117
118
119
120
121
122
123
124
125
126

    def testSimple(self):
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
Jinze Xue's avatar
Jinze Xue committed
127
        ], device=self.device)
128
129
130
131
132
133
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        _, aev = self.aev_computer((species, coordinates))
        _, cu_aev = self.cuaev_computer((species, coordinates))
        self.assertEqual(cu_aev, aev)

134
135
136
137
138
139
140
141
142
    @skipIfNoMultiGPU
    def testMultiGPU(self):
        self.setUp(device='cuda:1')
        self.testSimple()
        self.testSimpleBackward()
        self.testSimpleDoubleBackward_1()
        self.testSimpleDoubleBackward_2()
        self.setUp(device='cuda:0')

Jinze Xue's avatar
Jinze Xue committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def testSimpleBackward(self):
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
        ], requires_grad=True, device=self.device)
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        _, aev = self.aev_computer((species, coordinates))
        aev.backward(torch.ones_like(aev))
160
        force_ref = coordinates.grad
Jinze Xue's avatar
Jinze Xue committed
161
162
163
164
165

        coordinates = coordinates.clone().detach()
        coordinates.requires_grad_()
        _, cu_aev = self.cuaev_computer((species, coordinates))
        cu_aev.backward(torch.ones_like(cu_aev))
166
        force_cuaev = coordinates.grad
Jinze Xue's avatar
Jinze Xue committed
167
        self.assertEqual(cu_aev, aev, f'cu_aev: {cu_aev}\n aev: {aev}')
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        self.assertEqual(force_cuaev, force_ref, f'\nforce_cuaev: {force_cuaev}\n aev_grad: {force_ref}')

    def testSimpleDoubleBackward_1(self):
        """
        Test Double Backward (Force training) by parameters' gradient
        """
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
        ], requires_grad=True, device=self.device)
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        self._double_backward_1_test(species, coordinates)

    def testSimpleDoubleBackward_2(self):
        """
        Test Double Backward (Force training) directly.
        Double backward:
        Forward: input is dE/dAEV, output is force
        Backward: input is dLoss/dForce, output is dLoss/(dE/dAEV)
        """
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
        ], requires_grad=True, device=self.device)
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        self._double_backward_2_test(species, coordinates)
Jinze Xue's avatar
Jinze Xue committed
212

213
214
215
216
    def testTripeptideMD(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
Jinze Xue's avatar
Jinze Xue committed
217
                coordinates, species, *_ = pickle.load(f)
218
219
220
221
222
223
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                _, cu_aev = self.cuaev_computer((species, coordinates))
                self.assertEqual(cu_aev, aev)

Jinze Xue's avatar
Jinze Xue committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def testTripeptideMDBackward(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, *_ = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                aev.backward(torch.ones_like(aev))
                aev_grad = coordinates.grad

                coordinates = coordinates.clone().detach()
                coordinates.requires_grad_()
                _, cu_aev = self.cuaev_computer((species, coordinates))
                cu_aev.backward(torch.ones_like(cu_aev))
                cuaev_grad = coordinates.grad
                self.assertEqual(cu_aev, aev)
                self.assertEqual(cuaev_grad, aev_grad, atol=5e-5, rtol=5e-5)

243
244
245
246
247
248
249
250
251
    def testTripeptideMDDoubleBackward_2(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, *_ = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                self._double_backward_2_test(species, coordinates)

252
253
254
255
256
257
258
259
260
261
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(torch.float).to(self.device)
                species = torch.from_numpy(species).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                _, cu_aev = self.cuaev_computer((species, coordinates))
                self.assertEqual(cu_aev, aev)
262

Jinze Xue's avatar
Jinze Xue committed
263
264
265
266
    def testNISTBackward(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
267
            for coordinates, species, _, _, _, _ in data[:10]:
Jinze Xue's avatar
Jinze Xue committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                coordinates = torch.from_numpy(coordinates).to(torch.float).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                aev.backward(torch.ones_like(aev))
                aev_grad = coordinates.grad

                coordinates = coordinates.clone().detach()
                coordinates.requires_grad_()
                _, cu_aev = self.cuaev_computer((species, coordinates))
                cu_aev.backward(torch.ones_like(cu_aev))
                cuaev_grad = coordinates.grad
                self.assertEqual(cu_aev, aev)
                self.assertEqual(cuaev_grad, aev_grad, atol=5e-5, rtol=5e-5)

282
283
284
285
286
287
288
289
290
    def testNISTDoubleBackward_2(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data[:3]:
                coordinates = torch.from_numpy(coordinates).to(torch.float).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).to(self.device)
                self._double_backward_2_test(species, coordinates)

291
    def testVeryDenseMolecule(self):
Jinze Xue's avatar
Jinze Xue committed
292
        """
Jinze Xue's avatar
Jinze Xue committed
293
294
        Test very dense molecule for aev correctness, especially for angular kernel when center atom pairs are more than 32.
        issue: https://github.com/aiqm/torchani/pull/555
Jinze Xue's avatar
Jinze Xue committed
295
        """
296
        for i in range(5):
297
298
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
Jinze Xue's avatar
Jinze Xue committed
299
                coordinates, species, *_ = pickle.load(f)
300
301
302
303
304
305
306
                # change angstrom coordinates to 10 times smaller
                coordinates = 0.1 * torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                _, cu_aev = self.cuaev_computer((species, coordinates))
                self.assertEqual(cu_aev, aev, atol=5e-5, rtol=5e-5)

Jinze Xue's avatar
Jinze Xue committed
307
    def testVeryDenseMoleculeBackward(self):
308
        for i in range(5):
Jinze Xue's avatar
Jinze Xue committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, *_ = pickle.load(f)
                # change angstrom coordinates to 10 times smaller
                coordinates = 0.1 * torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)

                _, aev = self.aev_computer((species, coordinates))
                aev.backward(torch.ones_like(aev))
                aev_grad = coordinates.grad

                coordinates = coordinates.clone().detach()
                coordinates.requires_grad_()
                _, cu_aev = self.cuaev_computer((species, coordinates))
                cu_aev.backward(torch.ones_like(cu_aev))
                cuaev_grad = coordinates.grad
                self.assertEqual(cu_aev, aev, atol=5e-5, rtol=5e-5)
                self.assertEqual(cuaev_grad, aev_grad, atol=5e-4, rtol=5e-4)

329
330
331

if __name__ == '__main__':
    unittest.main()