training-benchmark.py 8.83 KB
Newer Older
Xiang Gao's avatar
Xiang Gao committed
1
2
import torch
import torchani
3
import time
Xiang Gao's avatar
Xiang Gao committed
4
import timeit
5
import argparse
6
import pkbar
Gao, Xiang's avatar
Gao, Xiang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21


def atomic():
    model = torch.nn.Sequential(
        torch.nn.Linear(384, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 64),
        torch.nn.CELU(0.1),
        torch.nn.Linear(64, 1)
    )
    return model


22
23
24
25
26
27
28
29
30
31
32
33
34
def time_func(key, func):
    timers[key] = 0

    def wrapper(*args, **kwargs):
        start = timeit.default_timer()
        ret = func(*args, **kwargs)
        end = timeit.default_timer()
        timers[key] += end - start
        return ret

    return wrapper


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def hartree2kcal(x):
    return 627.509 * x


if __name__ == "__main__":
    # parse command line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('dataset_path',
                        help='Path of the dataset, can a hdf5 file \
                            or a directory containing hdf5 files')
    parser.add_argument('-d', '--device',
                        help='Device of modules and tensors',
                        default=('cuda' if torch.cuda.is_available() else 'cpu'))
    parser.add_argument('-b', '--batch_size',
                        help='Number of conformations of each batch',
                        default=2560, type=int)
    parser.add_argument('-o', '--original_dataset_api',
                        help='use original dataset api',
                        dest='dataset',
                        action='store_const',
                        const='original')
    parser.add_argument('-s', '--shuffle_dataset_api',
                        help='use shuffle dataset api',
                        dest='dataset',
                        action='store_const',
                        const='shuffle')
    parser.add_argument('-c', '--cache_dataset_api',
                        help='use cache dataset api',
                        dest='dataset',
                        action='store_const',
                        const='cache')
    parser.set_defaults(dataset='shuffle')
    parser.add_argument('-n', '--num_epochs',
                        help='epochs',
                        default=1, type=int)
    parser = parser.parse_args()

    Rcr = 5.2000e+00
    Rca = 3.5000e+00
    EtaR = torch.tensor([1.6000000e+01], device=parser.device)
    ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=parser.device)
    Zeta = torch.tensor([3.2000000e+01], device=parser.device)
    ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=parser.device)
    EtaA = torch.tensor([8.0000000e+00], device=parser.device)
    ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=parser.device)
    num_species = 4
    aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)

    nn = torchani.ANIModel([atomic() for _ in range(4)])
    model = torch.nn.Sequential(aev_computer, nn).to(parser.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.000001)
    mse = torch.nn.MSELoss(reduction='none')
    timers = {}

    # enable timers
    torchani.aev.cutoff_cosine = time_func('torchani.aev.cutoff_cosine', torchani.aev.cutoff_cosine)
    torchani.aev.radial_terms = time_func('torchani.aev.radial_terms', torchani.aev.radial_terms)
    torchani.aev.angular_terms = time_func('torchani.aev.angular_terms', torchani.aev.angular_terms)
    torchani.aev.compute_shifts = time_func('torchani.aev.compute_shifts', torchani.aev.compute_shifts)
    torchani.aev.neighbor_pairs = time_func('torchani.aev.neighbor_pairs', torchani.aev.neighbor_pairs)
    torchani.aev.triu_index = time_func('torchani.aev.triu_index', torchani.aev.triu_index)
    torchani.aev.convert_pair_index = time_func('torchani.aev.convert_pair_index', torchani.aev.convert_pair_index)
    torchani.aev.cumsum_from_zero = time_func('torchani.aev.cumsum_from_zero', torchani.aev.cumsum_from_zero)
    torchani.aev.triple_by_molecule = time_func('torchani.aev.triple_by_molecule', torchani.aev.triple_by_molecule)
    torchani.aev.compute_aev = time_func('torchani.aev.compute_aev', torchani.aev.compute_aev)
    model[0].forward = time_func('total', model[0].forward)
    model[1].forward = time_func('forward', model[1].forward)

    if parser.dataset == 'shuffle':
        torchani.data.ShuffledDataset = time_func('data_loading', torchani.data.ShuffledDataset)
        print('using shuffle dataset API')
        print('=> loading dataset...')
        dataset = torchani.data.ShuffledDataset(file_path=parser.dataset_path,
                                                species_order=['H', 'C', 'N', 'O'],
                                                subtract_self_energies=True,
                                                batch_size=parser.batch_size,
                                                num_workers=2)
        print('=> the first batch is ([chunk1, chunk2, ...], {"energies", "force", ...}) in which chunk1=(species, coordinates)')
        chunks, properties = iter(dataset).next()
    elif parser.dataset == 'original':
        torchani.data.load_ani_dataset = time_func('data_loading', torchani.data.load_ani_dataset)
        print('using original dataset API')
        print('=> loading dataset...')
        energy_shifter = torchani.utils.EnergyShifter(None)
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HCNO')
        dataset = torchani.data.load_ani_dataset(parser.dataset_path, species_to_tensor,
                                                 parser.batch_size, device=parser.device,
                                                 transform=[energy_shifter.subtract_from_dataset])
        print('=> the first batch is ([chunk1, chunk2, ...], {"energies", "force", ...}) in which chunk1=(species, coordinates)')
        chunks, properties = dataset[0]
    elif parser.dataset == 'cache':
        torchani.data.CachedDataset = time_func('data_loading', torchani.data.CachedDataset)
        print('using cache dataset API')
        print('=> loading dataset...')
        dataset = torchani.data.CachedDataset(file_path=parser.dataset_path,
                                              species_order=['H', 'C', 'N', 'O'],
                                              subtract_self_energies=True,
                                              batch_size=parser.batch_size)
        print('=> caching all dataset into cpu')
        pbar = pkbar.Pbar('loading and processing dataset into cpu memory, total '
                          + 'batches: {}, batch_size: {}'.format(len(dataset), parser.batch_size),
                          len(dataset))
        for i, t in enumerate(dataset):
            pbar.update(i)
        print('=> the first batch is ([chunk1, chunk2, ...], {"energies", "force", ...}) in which chunk1=(species, coordinates)')
        chunks, properties = dataset[0]

    for i, chunk in enumerate(chunks):
        print('chunk{}'.format(i + 1), list(chunk[0].size()), list(chunk[1].size()))
    print('energies', list(properties['energies'].size()))

    print('=> start training')
    start = time.time()

    for epoch in range(0, parser.num_epochs):

        print('Epoch: %d/%d' % (epoch + 1, parser.num_epochs))
        progbar = pkbar.Kbar(target=len(dataset) - 1, width=8)

        for i, (batch_x, batch_y) in enumerate(dataset):

            true_energies = batch_y['energies'].to(parser.device)
            predicted_energies = []
            num_atoms = []

            for chunk_species, chunk_coordinates in batch_x:
                chunk_species = chunk_species.to(parser.device)
                chunk_coordinates = chunk_coordinates.to(parser.device)
                num_atoms.append((chunk_species >= 0).to(true_energies.dtype).sum(dim=1))
                _, chunk_energies = model((chunk_species, chunk_coordinates))
                predicted_energies.append(chunk_energies)

            num_atoms = torch.cat(num_atoms)
            predicted_energies = torch.cat(predicted_energies)
            loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
            rmse = hartree2kcal((mse(predicted_energies, true_energies)).mean()).detach().cpu().numpy()
            loss.backward()
            optimizer.step()

            progbar.update(i, values=[("rmse", rmse)])
    stop = time.time()

    print('=> more detail about benchmark')
    for k in timers:
        if k.startswith('torchani.'):
            print('{} - {:.1f}s'.format(k, timers[k]))
    print('Total AEV - {:.1f}s'.format(timers['total']))
    print('Data Loading - {:.1f}s'.format(timers['data_loading']))
    print('NN - {:.1f}s'.format(timers['forward']))
    print('Epoch time - {:.1f}s'.format(stop - start))