test_data.py 5.51 KB
Newer Older
Xiang Gao's avatar
Xiang Gao committed
1
2
3
4
5
6
7
8
9
10
11
12
import torchani
import unittest
import tempfile
import os
import torch
import torchani.pyanitools as pyanitools
import torchani.data
from math import ceil
from bisect import bisect
from pickle import dump, load


13
14
15
16
path = os.path.dirname(os.path.realpath(__file__))
dataset_dir = os.path.join(path, 'dataset')


Xiang Gao's avatar
Xiang Gao committed
17
18
class TestDataset(unittest.TestCase):

19
    def setUp(self, data_path=dataset_dir):
Xiang Gao's avatar
Xiang Gao committed
20
21
22
23
24
25
26
27
28
29
        self.data_path = data_path
        self.ds = torchani.data.load_dataset(data_path)

    def testLen(self):
        # compute data length using Dataset
        l1 = len(self.ds)
        # compute data lenght using pyanitools
        l2 = 0
        for f in os.listdir(self.data_path):
            f = os.path.join(self.data_path, f)
30
31
            if os.path.isfile(f) and \
               (f.endswith('.h5') or f.endswith('.hdf5')):
Xiang Gao's avatar
Xiang Gao committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
                for j in pyanitools.anidataloader(f):
                    l2 += j['energies'].shape[0]
        # compute data length using iterator
        l3 = len(list(self.ds))
        # these lengths should match
        self.assertEqual(l1, l2)
        self.assertEqual(l1, l3)

    def testNumChunks(self):
        chunksize = 64
        # compute number of chunks using batch sampler
        bs = torchani.data.BatchSampler(self.ds, chunksize, 1)
        l1 = len(bs)
        # compute number of chunks using pyanitools
        l2 = 0
        for f in os.listdir(self.data_path):
            f = os.path.join(self.data_path, f)
49
50
            if os.path.isfile(f) and \
               (f.endswith('.h5') or f.endswith('.hdf5')):
Xiang Gao's avatar
Xiang Gao committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
                for j in pyanitools.anidataloader(f):
                    conformations = j['energies'].shape[0]
                    l2 += ceil(conformations / chunksize)
        # compute number of chunks using iterator
        l3 = len(list(bs))
        # these lengths should match
        self.assertEqual(l1, l2)
        self.assertEqual(l1, l3)

    def testNumBatches(self):
        chunksize = 64
        batch_chunks = 4
        # compute number of batches using batch sampler
        bs = torchani.data.BatchSampler(self.ds, chunksize, batch_chunks)
        l1 = len(bs)
        # compute number of batches by simple math
        bs2 = torchani.data.BatchSampler(self.ds, chunksize, 1)
        l2 = ceil(len(bs2) / batch_chunks)
        # compute number of batches using iterator
        l3 = len(list(bs))
        # these lengths should match
        self.assertEqual(l1, l2)
        self.assertEqual(l1, l3)

    def testBatchSize1(self):
        bs = torchani.data.BatchSampler(self.ds, 1, 1)
        self.assertEqual(len(bs), len(self.ds))

    def testSplitSize(self):
        chunksize = 64
        bs = torchani.data.BatchSampler(self.ds, chunksize, 1)
        chunks = len(bs)
        ds1, ds2 = torchani.data.random_split(
            self.ds, [200, chunks-200], chunksize)
        bs1 = torchani.data.BatchSampler(ds1, chunksize, 1)
        bs2 = torchani.data.BatchSampler(ds2, chunksize, 1)
        self.assertEqual(len(bs1), 200)
        self.assertEqual(len(bs2), chunks-200)

    def testSplitNoOverlap(self):
        chunksize = 64
        bs = torchani.data.BatchSampler(self.ds, chunksize, 1)
        chunks = len(bs)
        ds1, ds2 = torchani.data.random_split(
            self.ds, [200, chunks-200], chunksize)
        indices1 = ds1.dataset.indices
        indices2 = ds2.dataset.indices
        self.assertEqual(len(indices1), len(ds1))
        self.assertEqual(len(indices2), len(ds2))
        self.assertEqual(len(indices1), len(set(indices1)))
        self.assertEqual(len(indices2), len(set(indices2)))
        self.assertEqual(len(self.ds), len(set(indices1+indices2)))

    def _testMolSizes(self, ds):
        for i in range(len(ds)):
106
            left = bisect(ds.cumulative_sizes, i)
Xiang Gao's avatar
Xiang Gao committed
107
108
            moli = ds[i][0].item()
            for j in range(len(ds)):
109
                left2 = bisect(ds.cumulative_sizes, j)
Xiang Gao's avatar
Xiang Gao committed
110
                molj = ds[j][0].item()
111
                if left == left2:
Xiang Gao's avatar
Xiang Gao committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                    self.assertEqual(moli, molj)
                else:
                    if moli == molj:
                        print(i, j)
                    self.assertNotEqual(moli, molj)

    def testMolSizes(self):
        chunksize = 8
        bs = torchani.data.BatchSampler(self.ds, chunksize, 1)
        chunks = len(bs)
        ds1, ds2 = torchani.data.random_split(
            self.ds, [50, chunks-50], chunksize)
        self._testMolSizes(ds1)

    def testSaveLoad(self):
        chunksize = 8
        bs = torchani.data.BatchSampler(self.ds, chunksize, 1)
        chunks = len(bs)
        ds1, ds2 = torchani.data.random_split(
            self.ds, [50, chunks-50], chunksize)

        tmpdir = tempfile.TemporaryDirectory()
        tmpdirname = tmpdir.name
        filename = os.path.join(tmpdirname, 'test.obj')

        with open(filename, 'wb') as f:
            dump(ds1, f)

        with open(filename, 'rb') as f:
            ds1_loaded = load(f)

        self.assertEqual(len(ds1), len(ds1_loaded))
        self.assertListEqual(ds1.sizes, ds1_loaded.sizes)
        self.assertIsInstance(ds1_loaded, torchani.data.ANIDataset)

        for i in range(len(ds1)):
            i1 = ds1[i]
            i2 = ds1_loaded[i]
            molid1 = i1[0].item()
            molid2 = i2[0].item()
            self.assertEqual(molid1, molid2)
            xyz1 = i1[1]
            xyz2 = i2[1]
            maxdiff = torch.max(torch.abs(xyz1-xyz2)).item()
            self.assertEqual(maxdiff, 0)
            e1 = i1[2].item()
            e2 = i2[2].item()
            self.assertEqual(e1, e2)


if __name__ == '__main__':
    unittest.main()