nnp_training_force.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding: utf-8 -*-
"""
.. _force-training-example:

Train Neural Network Potential To Both Energies and Forces
==========================================================

We have seen how to train a neural network potential by manually writing
training loop in :ref:`training-example`. This tutorial shows how to modify
that script to train to force.
"""

###############################################################################
# Most part of the script are the same as :ref:`training-example`, we will omit
# the comments for these parts. Please refer to :ref:`training-example` for more
# information
17

18
19
20
21
22
23
24
import torch
import torchani
import os
import math
import torch.utils.tensorboard
import tqdm

Ignacio Pickering's avatar
Ignacio Pickering committed
25
26
27
# helper function to convert energy unit from Hartree to kcal/mol
from torchani.units import hartree2kcalmol

28
29
30
31
32
33
34
35
36
37
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Rcr = 5.2000e+00
Rca = 3.5000e+00
EtaR = torch.tensor([1.6000000e+01], device=device)
ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device)
Zeta = torch.tensor([3.2000000e+01], device=device)
ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device)
EtaA = torch.tensor([8.0000000e+00], device=device)
ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device)
38
39
species_order = ['H', 'C', 'N', 'O']
num_species = len(species_order)
40
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
41
energy_shifter = torchani.utils.EnergyShifter(None)
42
43
44
45
46
47


try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
48
dspath = os.path.join(path, '../dataset/ani-1x/sample.h5')
49
50
51

batch_size = 2560

52
training, validation = torchani.data.load(dspath).subtract_self_energies(energy_shifter).species_to_indices(species_order).shuffle().split(0.8, None)
53
54
training = training.collate(batch_size).cache()
validation = validation.collate(batch_size).cache()
55

56
57
print('Self atomic energies: ', energy_shifter.self_energies)

58
59
###############################################################################
# The code to define networks, optimizers, are mostly the same
60
aev_dim = aev_computer.aev_length
61
62

H_network = torch.nn.Sequential(
63
    torch.nn.Linear(aev_dim, 160),
64
65
66
67
68
69
70
71
72
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

C_network = torch.nn.Sequential(
73
    torch.nn.Linear(aev_dim, 144),
74
75
76
77
78
79
80
81
82
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
83
    torch.nn.Linear(aev_dim, 128),
84
85
86
87
88
89
90
91
92
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
93
    torch.nn.Linear(aev_dim, 128),
94
95
96
97
98
99
100
101
102
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
print(nn)

###############################################################################
# Initialize the weights and biases.
#
# .. note::
#   Pytorch default initialization for the weights and biases in linear layers
#   is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_
#   We initialize the weights similarly but from the normal distribution.
#   The biases were initialized to zero.
#
# .. _TORCH.NN.MODULES.LINEAR:
#   https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear


def init_params(m):
    if isinstance(m, torch.nn.Linear):
        torch.nn.init.kaiming_normal_(m.weight, a=1.0)
        torch.nn.init.zeros_(m.bias)


nn.apply(init_params)

###############################################################################
# Let's now create a pipeline of AEV Computer --> Neural Networks.
128
model = torchani.nn.Sequential(aev_computer, nn).to(device)
129
130

###############################################################################
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Here we will use Adam with weight decay for the weights and Stochastic Gradient
# Descent for biases.

AdamW = torchani.optim.AdamW([
    # H networks
    {'params': [H_network[0].weight]},
    {'params': [H_network[2].weight], 'weight_decay': 0.00001},
    {'params': [H_network[4].weight], 'weight_decay': 0.000001},
    {'params': [H_network[6].weight]},
    # C networks
    {'params': [C_network[0].weight]},
    {'params': [C_network[2].weight], 'weight_decay': 0.00001},
    {'params': [C_network[4].weight], 'weight_decay': 0.000001},
    {'params': [C_network[6].weight]},
    # N networks
    {'params': [N_network[0].weight]},
    {'params': [N_network[2].weight], 'weight_decay': 0.00001},
    {'params': [N_network[4].weight], 'weight_decay': 0.000001},
    {'params': [N_network[6].weight]},
    # O networks
    {'params': [O_network[0].weight]},
    {'params': [O_network[2].weight], 'weight_decay': 0.00001},
    {'params': [O_network[4].weight], 'weight_decay': 0.000001},
    {'params': [O_network[6].weight]},
])

SGD = torch.optim.SGD([
    # H networks
    {'params': [H_network[0].bias]},
    {'params': [H_network[2].bias]},
    {'params': [H_network[4].bias]},
    {'params': [H_network[6].bias]},
    # C networks
    {'params': [C_network[0].bias]},
    {'params': [C_network[2].bias]},
    {'params': [C_network[4].bias]},
    {'params': [C_network[6].bias]},
    # N networks
    {'params': [N_network[0].bias]},
    {'params': [N_network[2].bias]},
    {'params': [N_network[4].bias]},
    {'params': [N_network[6].bias]},
    # O networks
    {'params': [O_network[0].bias]},
    {'params': [O_network[2].bias]},
    {'params': [O_network[4].bias]},
    {'params': [O_network[6].bias]},
], lr=1e-3)

AdamW_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(AdamW, factor=0.5, patience=100, threshold=0)
SGD_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(SGD, factor=0.5, patience=100, threshold=0)
182
183
184
185
186

###############################################################################
# This part of the code is also the same
latest_checkpoint = 'force-training-latest.pt'

187
188
189
190
191
192
193
194
195
###############################################################################
# Resume training from previously saved checkpoints:
if os.path.isfile(latest_checkpoint):
    checkpoint = torch.load(latest_checkpoint)
    nn.load_state_dict(checkpoint['nn'])
    AdamW.load_state_dict(checkpoint['AdamW'])
    SGD.load_state_dict(checkpoint['SGD'])
    AdamW_scheduler.load_state_dict(checkpoint['AdamW_scheduler'])
    SGD_scheduler.load_state_dict(checkpoint['SGD_scheduler'])
196

197
198
199
200
201
###############################################################################
# During training, we need to validate on validation set and if validation error
# is better than the best, then save the new best model to a checkpoint


202
203
204
205
206
def validate():
    # run validation
    mse_sum = torch.nn.MSELoss(reduction='sum')
    total_mse = 0.0
    count = 0
207
208
209
210
211
    for properties in validation:
        species = properties['species'].to(device)
        coordinates = properties['coordinates'].to(device).float()
        true_energies = properties['energies'].to(device).float()
        _, predicted_energies = model((species, coordinates))
212
213
        total_mse += mse_sum(predicted_energies, true_energies).item()
        count += predicted_energies.shape[0]
Ignacio Pickering's avatar
Ignacio Pickering committed
214
    return hartree2kcalmol(math.sqrt(total_mse / count))
215
216
217


###############################################################################
218
# We will also use TensorBoard to visualize our training process
219
220
221
222
tensorboard = torch.utils.tensorboard.SummaryWriter()

###############################################################################
# In the training loop, we need to compute force, and loss for forces
223
224
225
mse = torch.nn.MSELoss(reduction='none')

print("training starting from epoch", AdamW_scheduler.last_epoch + 1)
Gao, Xiang's avatar
Gao, Xiang committed
226
227
228
# We only train 3 epoches here in able to generate the docs quickly.
# Real training should take much more than 3 epoches.
max_epochs = 3
229
early_stopping_learning_rate = 1.0E-5
230
force_coefficient = 0.1  # controls the importance of energy loss vs force loss
231
232
best_model_checkpoint = 'force-training-best.pt'

233
for _ in range(AdamW_scheduler.last_epoch + 1, max_epochs):
234
    rmse = validate()
235
    print('RMSE:', rmse, 'at epoch', AdamW_scheduler.last_epoch + 1)
236

237
    learning_rate = AdamW.param_groups[0]['lr']
238
239
240
241
242

    if learning_rate < early_stopping_learning_rate:
        break

    # checkpoint
243
    if AdamW_scheduler.is_better(rmse, AdamW_scheduler.best):
244
245
        torch.save(nn.state_dict(), best_model_checkpoint)

246
247
248
249
250
251
    AdamW_scheduler.step(rmse)
    SGD_scheduler.step(rmse)

    tensorboard.add_scalar('validation_rmse', rmse, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('best_validation_rmse', AdamW_scheduler.best, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('learning_rate', learning_rate, AdamW_scheduler.last_epoch)
252
253
254

    # Besides being stored in x, species and coordinates are also stored in y.
    # So here, for simplicity, we just ignore the x and use y for everything.
255
    for i, properties in tqdm.tqdm(
256
257
258
259
        enumerate(training),
        total=len(training),
        desc="epoch {}".format(AdamW_scheduler.last_epoch)
    ):
260
261
262
263
264
265
266
267
268
269
270
271
272
        species = properties['species'].to(device)
        coordinates = properties['coordinates'].to(device).float().requires_grad_(True)
        true_energies = properties['energies'].to(device).float()
        true_forces = properties['forces'].to(device).float()
        num_atoms = (species >= 0).sum(dim=1, dtype=true_energies.dtype)
        _, predicted_energies = model((species, coordinates))

        # We can use torch.autograd.grad to compute force. Remember to
        # create graph so that the loss of the force can contribute to
        # the gradient of parameters, and also to retain graph so that
        # we can backward through it a second time when computing gradient
        # w.r.t. parameters.
        forces = -torch.autograd.grad(predicted_energies.sum(), coordinates, create_graph=True, retain_graph=True)[0]
273
274

        # Now the total loss has two parts, energy loss and force loss
275
        energy_loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
276
        force_loss = (mse(true_forces, forces).sum(dim=(1, 2)) / num_atoms).mean()
277
278
        loss = energy_loss + force_coefficient * force_loss

279
280
        AdamW.zero_grad()
        SGD.zero_grad()
281
        loss.backward()
282
283
        AdamW.step()
        SGD.step()
284
285

        # write current batch loss to TensorBoard
286
        tensorboard.add_scalar('batch_loss', loss, AdamW_scheduler.last_epoch * len(training) + i)
287
288
289

    torch.save({
        'nn': nn.state_dict(),
290
291
292
293
        'AdamW': AdamW.state_dict(),
        'SGD': SGD.state_dict(),
        'AdamW_scheduler': AdamW_scheduler.state_dict(),
        'SGD_scheduler': SGD_scheduler.state_dict(),
294
    }, latest_checkpoint)