test_aev.py 10.8 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
8
import itertools
import ase
import math
9
10
11
12
13
14
15

path = os.path.dirname(os.path.realpath(__file__))
N = 97


class TestAEV(unittest.TestCase):

16
    def setUp(self):
17
18
        builtins = torchani.neurochem.Builtins()
        self.aev_computer = builtins.aev_computer
19
        self.radial_length = self.aev_computer.radial_length
20
21
        self.tolerance = 1e-5

22
23
24
25
26
27
    def random_skip(self):
        return False

    def transform(self, x):
        return x

28
    def _assertAEVEqual(self, expected_radial, expected_angular, aev):
29
30
        radial = aev[..., :self.radial_length]
        angular = aev[..., self.radial_length:]
31
32
33
34
35
36
37
        radial_diff = expected_radial - radial
        radial_max_error = torch.max(torch.abs(radial_diff)).item()
        angular_diff = expected_angular - angular
        angular_max_error = torch.max(torch.abs(angular_diff)).item()
        self.assertLess(radial_max_error, self.tolerance)
        self.assertLess(angular_max_error, self.tolerance)

38
39
    def testIsomers(self):
        for i in range(N):
40
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
41
42
43
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
44
45
46
47
48
49
50
51
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
52
                _, aev = self.aev_computer((species, coordinates))
53
54
55
56
57
                self._assertAEVEqual(expected_radial, expected_angular, aev)

    def testPadding(self):
        species_coordinates = []
        radial_angular = []
58
        for i in range(N):
59
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
60
61
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
62
63
64
65
66
67
68
69
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                radial = self.transform(radial)
                angular = self.transform(angular)
70
                species_coordinates.append((species, coordinates))
71
                radial_angular.append((radial, angular))
72
        species, coordinates = torchani.utils.pad_coordinates(
73
74
75
76
77
78
            species_coordinates)
        _, aev = self.aev_computer((species, coordinates))
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
79
            aev_ = aev[start:(start + conformations), 0:atoms]
80
81
            start += conformations
            self._assertAEVEqual(expected_radial, expected_angular, aev_)
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, radial, angular, _, _ in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial).to(torch.float)
                angular = torch.from_numpy(angular).to(torch.float)
                _, aev = self.aev_computer((species, coordinates))
                self._assertAEVEqual(radial, angular, aev)

97

98
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
99
100

    def setUp(self):
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        self.builtin = torchani.neurochem.Builtins()
        self.aev_computer = self.builtin.aev_computer.to(torch.double)

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
        pbc = torch.ones(3, dtype=torch.uint8)

        _, aev = self.aev_computer((species, coordinates, cell, pbc))

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
            _, aev2 = self.aev_computer((species, coordinates + translation, cell, pbc))
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
            molecule_index, atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            self.assertEqual(molecule_index.tolist(), [0])
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
            molecule_index, atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            self.assertEqual(molecule_index.tolist(), [0])
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
                xyz2[j] = new_i

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
            molecule_index, atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            self.assertEqual(molecule_index.tolist(), [0])
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
        molecule_index, atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
        self.assertEqual(molecule_index.tolist(), [0])
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
        self.species = torch.tensor([[1, 0, 0, 0]])
        self.pbc = torch.ones(3, dtype=torch.uint8)
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
        builtin = torchani.neurochem.Builtins()
        self.aev_computer = builtin.aev_computer.to(torch.double)
        _, self.aev = self.aev_computer((self.species, self.center_coordinates, self.cell, self.pbc))

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
            _, aev = self.aev_computer((self.species, coordinates, self.cell, self.pbc))
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
246

Gao, Xiang's avatar
Gao, Xiang committed
247

248
249
if __name__ == '__main__':
    unittest.main()