test_grad.py 2.19 KB
Newer Older
Ignacio Pickering's avatar
Ignacio Pickering committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torchani
import unittest
import os
import pickle

path = os.path.dirname(os.path.realpath(__file__))


class TestGrad(unittest.TestCase):
    # torch.autograd.gradcheck and torch.autograd.gradgradcheck verify that
    # the numerical and analytical gradient and hessian of a function
    # matches to within a given tolerance.
    #
    # The forward call of the function is wrapped with a lambda so that
    # gradcheck gets a function with only one tensor input and tensor output.

    # nondet_tol is necessarily greater than zero since some operations are
    # nondeterministic which makes two equal inputs have different outputs

    def setUp(self):
        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')

        self.model = torchani.models.ANI1x(model_index=0).to(device=self.device,
                                                             dtype=torch.double)
        datafile = os.path.join(path, 'test_data/NIST/all')

        # Some small molecules are selected to make the tests faster
        self.data = pickle.load(open(datafile, 'rb'))[1243:1250]

    def testGradCheck(self):
        for coordinates, species, _, _, _, _ in self.data:

            coordinates = torch.from_numpy(coordinates).to(device=self.device,
                                                           dtype=torch.float64)
            coordinates.requires_grad_(True)

            species = torch.from_numpy(species).to(self.device)

            torch.autograd.gradcheck(lambda x: self.model((species, x)).energies,
                                     coordinates,
                                     nondet_tol=1e-13)

    def testGradGradCheck(self):
        for coordinates, species, _, _, _, _ in self.data:

            coordinates = torch.from_numpy(coordinates).to(device=self.device,
                                                           dtype=torch.float64)
            coordinates.requires_grad_(True)

            species = torch.from_numpy(species).to(self.device)

            torch.autograd.gradgradcheck(lambda x: self.model((species, x)).energies,
                                         coordinates,
                                         nondet_tol=1e-13)