test_energies.py 3.39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import torch
import torchani
import unittest
import os
import pickle


path = os.path.dirname(os.path.realpath(__file__))
N = 97


class TestEnergies(unittest.TestCase):

14
    def setUp(self):
15
        self.tolerance = 5e-5
16
17
18
19
        model = torchani.models.ANI1x(model_index=0)
        self.aev_computer = model.aev_computer
        self.nnp = model.neural_networks
        self.energy_shifter = model.energy_shifter
20
21
        self.nn = torchani.nn.Sequential(self.nnp, self.energy_shifter)
        self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter)
22

23
24
25
26
27
28
    def random_skip(self):
        return False

    def transform(self, x):
        return x

29
    def testIsomers(self):
30
        for i in range(N):
31
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
32
33
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, energies, _ = pickle.load(f)
34
35
36
37
38
39
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                energies = torch.from_numpy(energies).to(torch.float)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                energies = self.transform(energies)
40
41
42
43
44
45
46
47
                _, energies_ = self.model((species, coordinates))
                max_diff = (energies - energies_).abs().max().item()
                self.assertLess(max_diff, self.tolerance)

    def testPadding(self):
        species_coordinates = []
        energies = []
        for i in range(N):
48
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
49
50
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, e, _ = pickle.load(f)
51
52
53
54
55
56
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                e = torch.from_numpy(e).to(torch.float)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                e = self.transform(e)
57
58
                species_coordinates.append(
                    torchani.utils.broadcast_first_dim({'species': species, 'coordinates': coordinates}))
59
                energies.append(e)
60
        species_coordinates = torchani.utils.pad_atomic_properties(
61
62
            species_coordinates)
        energies = torch.cat(energies)
63
        _, energies_ = self.model((species_coordinates['species'], species_coordinates['coordinates']))
64
65
        max_diff = (energies - energies_).abs().max().item()
        self.assertLess(max_diff, self.tolerance)
66
67


68
class TestEnergiesEnergyShifterJIT(TestEnergies):
69

70
71
72
    def setUp(self):
        super().setUp()
        self.energy_shifter = torch.jit.script(self.energy_shifter)
73
74
        self.nn = torchani.nn.Sequential(self.nnp, self.energy_shifter)
        self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter)
75
76


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class TestEnergiesANIModelJIT(TestEnergies):

    def setUp(self):
        super().setUp()
        self.nnp = torch.jit.script(self.nnp)
        self.nn = torchani.nn.Sequential(self.nnp, self.energy_shifter)
        self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter)


class TestEnergiesJIT(TestEnergies):

    def setUp(self):
        super().setUp()
        self.model = torch.jit.script(self.model)


93
94
if __name__ == '__main__':
    unittest.main()