training-aev-benchmark.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
import torchani
import time
import timeit
import argparse
import pkbar
import gc
import pynvml
import os
from torchani.units import hartree2kcalmol


def build_network():
    H_network = torch.nn.Sequential(
        torch.nn.Linear(384, 160),
        torch.nn.CELU(0.1),
        torch.nn.Linear(160, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 96),
        torch.nn.CELU(0.1),
        torch.nn.Linear(96, 1)
    )

    C_network = torch.nn.Sequential(
        torch.nn.Linear(384, 144),
        torch.nn.CELU(0.1),
        torch.nn.Linear(144, 112),
        torch.nn.CELU(0.1),
        torch.nn.Linear(112, 96),
        torch.nn.CELU(0.1),
        torch.nn.Linear(96, 1)
    )

    N_network = torch.nn.Sequential(
        torch.nn.Linear(384, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 112),
        torch.nn.CELU(0.1),
        torch.nn.Linear(112, 96),
        torch.nn.CELU(0.1),
        torch.nn.Linear(96, 1)
    )

    O_network = torch.nn.Sequential(
        torch.nn.Linear(384, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 112),
        torch.nn.CELU(0.1),
        torch.nn.Linear(112, 96),
        torch.nn.CELU(0.1),
        torch.nn.Linear(96, 1)
    )
    return [H_network, C_network, N_network, O_network]


def checkgpu(device=None):
    i = device if device else torch.cuda.current_device()
    t = torch.cuda.get_device_properties(i).total_memory
    c = torch.cuda.memory_reserved(i)
    name = torch.cuda.get_device_properties(i).name
    print('   GPU Memory Cached (pytorch) : {:7.1f}MB / {:.1f}MB ({})'.format(c / 1024 / 1024, t / 1024 / 1024, name))
    real_i = int(os.environ['CUDA_VISIBLE_DEVICES'][0]) if 'CUDA_VISIBLE_DEVICES' in os.environ else i
    pynvml.nvmlInit()
    h = pynvml.nvmlDeviceGetHandleByIndex(real_i)
    info = pynvml.nvmlDeviceGetMemoryInfo(h)
    name = pynvml.nvmlDeviceGetName(h)
    print('   GPU Memory Used (nvidia-smi): {:7.1f}MB / {:.1f}MB ({})'.format(info.used / 1024 / 1024, info.total / 1024 / 1024, name.decode()))


def alert(text):
    print('\033[91m{}\33[0m'.format(text))  # red


def sync_cuda(sync):
    if sync:
        torch.cuda.synchronize()


def benchmark(parser, dataset, use_cuda_extension, force_training=False):
    synchronize = True if parser.synchronize else False
    timers = {}

    def time_func(key, func):
        timers[key] = 0

        def wrapper(*args, **kwargs):
            start = timeit.default_timer()
            ret = func(*args, **kwargs)
            if synchronize:
                torch.cuda.synchronize()
            end = timeit.default_timer()
            timers[key] += end - start
            return ret

        return wrapper

    Rcr = 5.2000e+00
    Rca = 3.5000e+00
    EtaR = torch.tensor([1.6000000e+01], device=parser.device)
    ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=parser.device)
    Zeta = torch.tensor([3.2000000e+01], device=parser.device)
    ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=parser.device)
    EtaA = torch.tensor([8.0000000e+00], device=parser.device)
    ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=parser.device)
    num_species = 4
    aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species, use_cuda_extension)

    nn = torchani.ANIModel(build_network())
    model = torch.nn.Sequential(aev_computer, nn).to(parser.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.000001)
    mse = torch.nn.MSELoss(reduction='none')

    # enable timers
    torchani.aev.cutoff_cosine = time_func('torchani.aev.cutoff_cosine', torchani.aev.cutoff_cosine)
    torchani.aev.radial_terms = time_func('torchani.aev.radial_terms', torchani.aev.radial_terms)
    torchani.aev.angular_terms = time_func('torchani.aev.angular_terms', torchani.aev.angular_terms)
    torchani.aev.compute_shifts = time_func('torchani.aev.compute_shifts', torchani.aev.compute_shifts)
    torchani.aev.neighbor_pairs = time_func('torchani.aev.neighbor_pairs', torchani.aev.neighbor_pairs)
    torchani.aev.neighbor_pairs_nopbc = time_func('torchani.aev.neighbor_pairs_nopbc', torchani.aev.neighbor_pairs_nopbc)
    torchani.aev.triu_index = time_func('torchani.aev.triu_index', torchani.aev.triu_index)
    torchani.aev.cumsum_from_zero = time_func('torchani.aev.cumsum_from_zero', torchani.aev.cumsum_from_zero)
    torchani.aev.triple_by_molecule = time_func('torchani.aev.triple_by_molecule', torchani.aev.triple_by_molecule)
    torchani.aev.compute_aev = time_func('torchani.aev.compute_aev', torchani.aev.compute_aev)
    model[0].forward = time_func('total', model[0].forward)
    model[1].forward = time_func('forward', model[1].forward)
    optimizer.step = time_func('optimizer.step', optimizer.step)

    print('=> start training')
    start = time.time()
    loss_time = 0

    for epoch in range(0, parser.num_epochs):

        print('Epoch: %d/%d' % (epoch + 1, parser.num_epochs))
        progbar = pkbar.Kbar(target=len(dataset) - 1, width=8)

        for i, properties in enumerate(dataset):
            species = properties['species'].to(parser.device)
            coordinates = properties['coordinates'].to(parser.device).float().requires_grad_(force_training)
            true_energies = properties['energies'].to(parser.device).float()
            num_atoms = (species >= 0).sum(dim=1, dtype=true_energies.dtype)
            _, predicted_energies = model((species, coordinates))
            # TODO add sync after aev is done
            sync_cuda(synchronize)
            energy_loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
            if force_training:
                force_coefficient = 0.1
                true_forces = properties['forces'].to(parser.device).float()
                try:
                    forces = -torch.autograd.grad(predicted_energies.sum(), coordinates, create_graph=True, retain_graph=True)[0]
                except Exception as e:
                    alert('Error: {}'.format(e))
                    return
                force_loss = (mse(true_forces, forces).sum(dim=(1, 2)) / num_atoms).mean()
                loss = energy_loss + force_coefficient * force_loss
            else:
                loss = energy_loss
            rmse = hartree2kcalmol((mse(predicted_energies, true_energies)).mean()).detach().cpu().numpy()
            sync_cuda(synchronize)
            loss_start = time.time()
            loss.backward()
            sync_cuda(synchronize)
            loss_stop = time.time()
            loss_time += loss_stop - loss_start
            optimizer.step()
            sync_cuda(synchronize)
            progbar.update(i, values=[("rmse", rmse)])

        checkgpu()
    sync_cuda(synchronize)
    stop = time.time()

    print('=> More detail about benchmark PER EPOCH')
    for k in timers:
        if k.startswith('torchani.'):
            print('   {} - {:.1f}s'.format(k, timers[k] / parser.num_epochs))
    total_time = (stop - start) / parser.num_epochs
    loss_time = loss_time / parser.num_epochs
    opti_time = timers['optimizer.step'] / parser.num_epochs
    forward_time = timers['forward'] / parser.num_epochs
    aev_time = timers['total'] / parser.num_epochs
    print('Total AEV - {:.1f}s'.format(aev_time))
    print('Forward - {:.1f}s'.format(forward_time))
    print('Backward - {:.1f}s'.format(loss_time))
    print('Optimizer - {:.1f}s'.format(opti_time))
    print('Others - {:.1f}s'.format(total_time - loss_time - aev_time - forward_time - opti_time))
    print('Epoch time - {:.1f}s'.format(total_time))


if __name__ == "__main__":
    # parse command line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('dataset_path',
                        help='Path of the dataset, can a hdf5 file \
                            or a directory containing hdf5 files')
    parser.add_argument('-d', '--device',
                        help='Device of modules and tensors',
                        default=('cuda' if torch.cuda.is_available() else 'cpu'))
    parser.add_argument('-b', '--batch_size',
                        help='Number of conformations of each batch',
                        default=2560, type=int)
    parser.add_argument('-y', '--synchronize',
                        action='store_true',
                        help='whether to insert torch.cuda.synchronize() at the end of each function')
    parser.add_argument('-n', '--num_epochs',
                        help='epochs',
                        default=1, type=int)
    parser = parser.parse_args()

    print('=> loading dataset...')
    shifter = torchani.EnergyShifter(None)
    # parser.batch_size = 1280
    dataset = torchani.data.load(parser.dataset_path, additional_properties=('forces',)).subtract_self_energies(shifter).species_to_indices()
    print('=> Caching shuffled dataset...')
    dataset_shuffled = list(dataset.shuffle().collate(parser.batch_size))
    print('=> Caching non-shuffled dataset...')
    dataset = list(dataset.collate(parser.batch_size))

    print("=> CUDA info:")
    devices = torch.cuda.device_count()
    print('Total devices: {}'.format(devices))
    for i in range(devices):
        d = 'cuda:{}'.format(i)
        print('{}: {}'.format(i, torch.cuda.get_device_name(d)))
        print('   {}'.format(torch.cuda.get_device_properties(i)))
        checkgpu(i)

    print("\n\n=> Test 1/8: Shuffled Dataset, USE cuda extension, Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset_shuffled, use_cuda_extension=True, force_training=False)
    print("\n\n=> Test 2/8: Shuffled Dataset, NO cuda extension, Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset_shuffled, use_cuda_extension=False, force_training=False)
    print("\n\n=> Test 3/8: Non-Shuffled Dataset, USE cuda extension, Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset, use_cuda_extension=True, force_training=False)
    print("\n\n=> Test 4/8: Non-Shuffled Dataset, NO cuda extension, Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset, use_cuda_extension=False, force_training=False)

    print("\n\n=> Test 5/8: Shuffled Dataset, USE cuda extension, Force and Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset_shuffled, use_cuda_extension=True, force_training=True)
    print("\n\n=> Test 6/8: Shuffled Dataset, NO cuda extension, Force and Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset_shuffled, use_cuda_extension=False, force_training=True)
    print("\n\n=> Test 7/8: Non-Shuffled Dataset, USE cuda extension, Force and Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset, use_cuda_extension=True, force_training=True)
    print("\n\n=> Test 8/8: Non-Shuffled Dataset, NO cuda extension, Force and Energy training")
    torch.cuda.empty_cache()
    gc.collect()
    benchmark(parser, dataset, use_cuda_extension=False, force_training=True)