ANI-1x-training.py 3.62 KB
Newer Older
Xiang Gao's avatar
Xiang Gao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import torchani
import torchani.data
import math
import timeit
import itertools
import os
import sys
import pickle
from tensorboardX import SummaryWriter
from tqdm import tqdm
from common import *
from copy import deepcopy

chunk_size = 256
batch_chunks = 1024 // chunk_size

with open('data/dataset.dat', 'rb') as f:
    training, validation, testing = pickle.load(f)

    training_sampler = torchani.data.BatchSampler(
        training, chunk_size, batch_chunks)
    validation_sampler = torchani.data.BatchSampler(
        validation, chunk_size, batch_chunks)
    testing_sampler = torchani.data.BatchSampler(
        testing, chunk_size, batch_chunks)

    training_dataloader = torch.utils.data.DataLoader(
        training, batch_sampler=training_sampler, collate_fn=torchani.data.collate)
    validation_dataloader = torch.utils.data.DataLoader(
        validation, batch_sampler=validation_sampler, collate_fn=torchani.data.collate)
    testing_dataloader = torch.utils.data.DataLoader(
        testing, batch_sampler=testing_sampler, collate_fn=torchani.data.collate)

writer = SummaryWriter()

checkpoint = 'checkpoint.pt'
model = get_or_create_model(checkpoint)
optimizer = torch.optim.Adam(model.parameters(), amsgrad=True)
step = 0
epoch = 0


def subset_rmse(subset_dataloader):
    a = Averager()
    for batch in subset_dataloader:
        for molecule_id in batch:
            _species = subset_dataloader.dataset.species[molecule_id]
            coordinates, energies = batch[molecule_id]
            coordinates = coordinates.to(aev_computer.device)
            energies = energies.to(aev_computer.device)
            count, squared_error = evaluate(coordinates, energies, _species)
            squared_error = squared_error.item()
            a.add(count, squared_error)
    mse = a.avg()
    rmse = math.sqrt(mse) * 627.509
    return rmse


def optimize_step(a):
    mse = a.avg()
    rmse = math.sqrt(mse.item()) * 627.509
    writer.add_scalar('training_rmse_vs_step', rmse, step)
    loss = mse if epoch < 10 else 0.5 * torch.exp(2 * mse)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()


best_validation_rmse = math.inf
best_epoch = 0
start = timeit.default_timer()
while True:
    for batch in tqdm(training_dataloader, desc='epoch {}'.format(epoch), total=len(training_sampler)):
        a = Averager()
        for molecule_id in batch:
            _species = training.species[molecule_id]
            coordinates, energies = batch[molecule_id]
            coordinates = coordinates.to(aev_computer.device)
            energies = energies.to(aev_computer.device)
            count, squared_error = evaluate(model, coordinates, energies, _species)
            a.add(count, squared_error / len(_species))
        optimize_step(a)
        step += 1

    validation_rmse = subset_rmse(validation_dataloader)
    elapsed = round(timeit.default_timer() - start, 2)
    print('Epoch:', epoch, 'time:', elapsed,
          'validation rmse:', validation_rmse)
    writer.add_scalar('validation_rmse_vs_epoch', validation_rmse, epoch)
    writer.add_scalar('epoch_vs_step', epoch, step)
    writer.add_scalar('time_vs_epoch', elapsed, epoch)

    if validation_rmse < best_validation_rmse:
        best_validation_rmse = validation_rmse
        best_epoch = epoch
        writer.add_scalar('best_validation_rmse_vs_epoch',
                          best_validation_rmse, best_epoch)
        torch.save(model.state_dict(), checkpoint)
    elif epoch - best_epoch > 1000:
        print('Stop at best validation rmse:', best_validation_rmse)
        break

    epoch += 1

testing_rmse = subset_rmse(testing_dataloader)
print('Test rmse:', validation_rmse)