test_cuaev.py 17.8 KB
Newer Older
1
2
import os
import torch
3
4
import torchani
import unittest
5
import pickle
6
import copy
Gao, Xiang's avatar
Gao, Xiang committed
7
from torchani.testing import TestCase, make_tensor
8

9
10
path = os.path.dirname(os.path.realpath(__file__))

11
12
skipIfNoGPU = unittest.skipIf(not torch.cuda.is_available(), 'There is no device to run this test')
skipIfNoMultiGPU = unittest.skipIf(not torch.cuda.device_count() >= 2, 'There is not enough GPU devices to run this test')
13
skipIfNoCUAEV = unittest.skipIf(not torchani.aev.has_cuaev, "only valid when cuaev is installed")
14
15


16
@skipIfNoCUAEV
Gao, Xiang's avatar
Gao, Xiang committed
17
class TestCUAEVNoGPU(TestCase):
18

Gao, Xiang's avatar
Gao, Xiang committed
19
    def testSimple(self):
20
        def f(coordinates, species, Rcr: float, Rca: float, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species: int):
21
22
            cuaev_computer = torch.classes.cuaev.CuaevComputer(Rcr, Rca, EtaR.flatten(), ShfR.flatten(), EtaA.flatten(), Zeta.flatten(), ShfA.flatten(), ShfZ.flatten(), num_species)
            return torch.ops.cuaev.run(coordinates, species, cuaev_computer)
23
        s = torch.jit.script(f)
24
        self.assertIn("cuaev::run", str(s.graph))
25

Gao, Xiang's avatar
Gao, Xiang committed
26
27
28
29
30
31
32
33
34
    def testAEVComputer(self):
        path = os.path.dirname(os.path.realpath(__file__))
        const_file = os.path.join(path, '../torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
        consts = torchani.neurochem.Constants(const_file)
        aev_computer = torchani.AEVComputer(**consts, use_cuda_extension=True)
        s = torch.jit.script(aev_computer)
        # Computation of AEV using cuaev when there is no atoms does not require CUDA, and can be run without GPU
        species = make_tensor((8, 0), 'cpu', torch.int64, low=-1, high=4)
        coordinates = make_tensor((8, 0, 3), 'cpu', torch.float32, low=-5, high=5)
35
        self.assertIn("cuaev::run", str(s.graph_for((species, coordinates))))
Gao, Xiang's avatar
Gao, Xiang committed
36

Jinze (Richard) Xue's avatar
Jinze (Richard) Xue committed
37
38
39
40
41
42
43
44
45
46
47
48
    def testPickle(self):
        path = os.path.dirname(os.path.realpath(__file__))
        const_file = os.path.join(path, '../torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
        consts = torchani.neurochem.Constants(const_file)
        aev_computer = torchani.AEVComputer(**consts, use_cuda_extension=True)
        tmpfile = '/tmp/cuaev.pkl'
        with open(tmpfile, 'wb') as file:
            pickle.dump(aev_computer, file)
        with open(tmpfile, 'rb') as file:
            aev_computer = pickle.load(file)
        os.remove(tmpfile)

Gao, Xiang's avatar
Gao, Xiang committed
49
50

@skipIfNoGPU
51
@skipIfNoCUAEV
Gao, Xiang's avatar
Gao, Xiang committed
52
class TestCUAEV(TestCase):
53

54
    def setUp(self, device='cuda:0'):
55
        self.tolerance = 5e-5
56
        self.device = device
57
58
59
60
61
62
63
64
65
66
67
        Rcr = 5.2000e+00
        Rca = 3.5000e+00
        EtaR = torch.tensor([1.6000000e+01], device=self.device)
        ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=self.device)
        Zeta = torch.tensor([3.2000000e+01], device=self.device)
        ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=self.device)
        EtaA = torch.tensor([8.0000000e+00], device=self.device)
        ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=self.device)
        num_species = 4
        self.aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
        self.cuaev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species, use_cuda_extension=True)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        self.nn = torch.nn.Sequential(torch.nn.Linear(384, 1, False)).to(self.device)
        self.radial_length = self.aev_computer.radial_length

    def _double_backward_1_test(self, species, coordinates):

        def double_backward(aev_computer, species, coordinates):
            torch.manual_seed(12345)
            self.nn.zero_grad()
            _, aev = aev_computer((species, coordinates))
            E = self.nn(aev).sum()
            force = -torch.autograd.grad(E, coordinates, create_graph=True, retain_graph=True)[0]
            force_true = torch.randn_like(force)
            loss = torch.abs(force_true - force).sum(dim=(1, 2)).mean()
            loss.backward()
            param = next(self.nn.parameters())
            param_grad = copy.deepcopy(param.grad)
            return aev, force, param_grad

        aev, force_ref, param_grad_ref = double_backward(self.aev_computer, species, coordinates)
        cu_aev, force_cuaev, param_grad = double_backward(self.cuaev_computer, species, coordinates)

        self.assertEqual(cu_aev, aev, f'cu_aev: {cu_aev}\n aev: {aev}')
        self.assertEqual(force_cuaev, force_ref, f'\nforce_cuaev: {force_cuaev}\n force_ref: {force_ref}')
        self.assertEqual(param_grad, param_grad_ref, f'\nparam_grad: {param_grad}\n param_grad_ref: {param_grad_ref}', atol=5e-5, rtol=5e-5)

    def _double_backward_2_test(self, species, coordinates):

        def double_backward(aev_computer, species, coordinates):
            """
            # We want to get the gradient of `grad_aev`, which requires `grad_aev` to be a leaf node
            # due to `torch.autograd`'s limitation. So we split the coord->aev->energy graph into two separate
            # graphs: coord->aev and aev->energy, so that aev and grad_aev are now leaves.
            """
            torch.manual_seed(12345)
            # graph1 input -> aev
            coordinates = coordinates.clone().detach().requires_grad_()
            _, aev = aev_computer((species, coordinates))
            # graph2 aev -> E
            aev_ = aev.clone().detach().requires_grad_()
            E = self.nn(aev_).sum()
            # graph2 backward
            aev_grad = torch.autograd.grad(E, aev_, create_graph=True, retain_graph=True)[0]
            # graph1 backward
            aev_grad_ = aev_grad.clone().detach().requires_grad_()
            force = torch.autograd.grad(aev, coordinates, aev_grad_, create_graph=True, retain_graph=True)[0]
            # force loss backward
            force_true = torch.randn_like(force)
            loss = torch.abs(force_true - force).sum(dim=(1, 2)).mean()
            aev_grad_grad = torch.autograd.grad(loss, aev_grad_, create_graph=True, retain_graph=True)[0]

            return aev, force, aev_grad_grad

        aev, force_ref, aev_grad_grad = double_backward(self.aev_computer, species, coordinates)
        cu_aev, force_cuaev, cuaev_grad_grad = double_backward(self.cuaev_computer, species, coordinates)

        self.assertEqual(cu_aev, aev, f'cu_aev: {cu_aev}\n aev: {aev}', atol=5e-5, rtol=5e-5)
        self.assertEqual(force_cuaev, force_ref, f'\nforce_cuaev: {force_cuaev}\n force_ref: {force_ref}', atol=5e-5, rtol=5e-5)
        self.assertEqual(cuaev_grad_grad, aev_grad_grad, f'\ncuaev_grad_grad: {cuaev_grad_grad}\n aev_grad_grad: {aev_grad_grad}', atol=5e-5, rtol=5e-5)
126
127
128
129
130
131
132
133
134
135
136
137
138

    def testSimple(self):
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
Jinze Xue's avatar
Jinze Xue committed
139
        ], device=self.device)
140
141
142
143
144
145
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        _, aev = self.aev_computer((species, coordinates))
        _, cu_aev = self.cuaev_computer((species, coordinates))
        self.assertEqual(cu_aev, aev)

146
147
148
149
150
151
152
153
154
    @skipIfNoMultiGPU
    def testMultiGPU(self):
        self.setUp(device='cuda:1')
        self.testSimple()
        self.testSimpleBackward()
        self.testSimpleDoubleBackward_1()
        self.testSimpleDoubleBackward_2()
        self.setUp(device='cuda:0')

Jinze (Richard) Xue's avatar
Jinze (Richard) Xue committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def testPickleCorrectness(self):
        ref_aev_computer = self.cuaev_computer
        tmpfile = '/tmp/cuaev.pkl'
        with open(tmpfile, 'wb') as file:
            pickle.dump(ref_aev_computer, file)
        with open(tmpfile, 'rb') as file:
            test_aev_computer = pickle.load(file)
        os.remove(tmpfile)

        coordinates = torch.rand([2, 50, 3], device=self.device) * 5
        species = torch.randint(-1, 3, (2, 50), device=self.device)
        _, ref_aev = ref_aev_computer((species, coordinates))
        _, test_aev = test_aev_computer((species, coordinates))
        self.assertEqual(ref_aev, test_aev)

Jinze Xue's avatar
Jinze Xue committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def testSimpleBackward(self):
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
        ], requires_grad=True, device=self.device)
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        _, aev = self.aev_computer((species, coordinates))
        aev.backward(torch.ones_like(aev))
187
        force_ref = coordinates.grad
Jinze Xue's avatar
Jinze Xue committed
188
189
190
191
192

        coordinates = coordinates.clone().detach()
        coordinates.requires_grad_()
        _, cu_aev = self.cuaev_computer((species, coordinates))
        cu_aev.backward(torch.ones_like(cu_aev))
193
        force_cuaev = coordinates.grad
Jinze Xue's avatar
Jinze Xue committed
194
        self.assertEqual(cu_aev, aev, f'cu_aev: {cu_aev}\n aev: {aev}')
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        self.assertEqual(force_cuaev, force_ref, f'\nforce_cuaev: {force_cuaev}\n aev_grad: {force_ref}')

    def testSimpleDoubleBackward_1(self):
        """
        Test Double Backward (Force training) by parameters' gradient
        """
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
        ], requires_grad=True, device=self.device)
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        self._double_backward_1_test(species, coordinates)

    def testSimpleDoubleBackward_2(self):
        """
        Test Double Backward (Force training) directly.
        Double backward:
        Forward: input is dE/dAEV, output is force
        Backward: input is dLoss/dForce, output is dLoss/(dE/dAEV)
        """
        coordinates = torch.tensor([
            [[0.03192167, 0.00638559, 0.01301679],
             [-0.83140486, 0.39370209, -0.26395324],
             [-0.66518241, -0.84461308, 0.20759389],
             [0.45554739, 0.54289633, 0.81170881],
             [0.66091919, -0.16799635, -0.91037834]],
            [[-4.1862600, 0.0575700, -0.0381200],
             [-3.1689400, 0.0523700, 0.0200000],
             [-4.4978600, 0.8211300, 0.5604100],
             [-4.4978700, -0.8000100, 0.4155600],
             [0.00000000, -0.00000000, -0.00000000]]
        ], requires_grad=True, device=self.device)
        species = torch.tensor([[1, 0, 0, 0, 0], [2, 0, 0, 0, -1]], device=self.device)

        self._double_backward_2_test(species, coordinates)
Jinze Xue's avatar
Jinze Xue committed
239

240
241
242
243
    def testTripeptideMD(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
Jinze Xue's avatar
Jinze Xue committed
244
                coordinates, species, *_ = pickle.load(f)
245
246
247
248
249
250
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                _, cu_aev = self.cuaev_computer((species, coordinates))
                self.assertEqual(cu_aev, aev)

Jinze Xue's avatar
Jinze Xue committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    def testTripeptideMDBackward(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, *_ = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                aev.backward(torch.ones_like(aev))
                aev_grad = coordinates.grad

                coordinates = coordinates.clone().detach()
                coordinates.requires_grad_()
                _, cu_aev = self.cuaev_computer((species, coordinates))
                cu_aev.backward(torch.ones_like(cu_aev))
                cuaev_grad = coordinates.grad
                self.assertEqual(cu_aev, aev)
                self.assertEqual(cuaev_grad, aev_grad, atol=5e-5, rtol=5e-5)

270
271
272
273
274
275
276
277
278
    def testTripeptideMDDoubleBackward_2(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, *_ = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                self._double_backward_2_test(species, coordinates)

279
280
281
282
283
284
285
286
287
288
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(torch.float).to(self.device)
                species = torch.from_numpy(species).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                _, cu_aev = self.cuaev_computer((species, coordinates))
                self.assertEqual(cu_aev, aev)
289

Jinze Xue's avatar
Jinze Xue committed
290
291
292
293
    def testNISTBackward(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
294
            for coordinates, species, _, _, _, _ in data[:10]:
Jinze Xue's avatar
Jinze Xue committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                coordinates = torch.from_numpy(coordinates).to(torch.float).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                aev.backward(torch.ones_like(aev))
                aev_grad = coordinates.grad

                coordinates = coordinates.clone().detach()
                coordinates.requires_grad_()
                _, cu_aev = self.cuaev_computer((species, coordinates))
                cu_aev.backward(torch.ones_like(cu_aev))
                cuaev_grad = coordinates.grad
                self.assertEqual(cu_aev, aev)
                self.assertEqual(cuaev_grad, aev_grad, atol=5e-5, rtol=5e-5)

309
310
311
312
313
314
315
316
317
    def testNISTDoubleBackward_2(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data[:3]:
                coordinates = torch.from_numpy(coordinates).to(torch.float).to(self.device).requires_grad_(True)
                species = torch.from_numpy(species).to(self.device)
                self._double_backward_2_test(species, coordinates)

318
    def testVeryDenseMolecule(self):
Jinze Xue's avatar
Jinze Xue committed
319
        """
Jinze Xue's avatar
Jinze Xue committed
320
321
        Test very dense molecule for aev correctness, especially for angular kernel when center atom pairs are more than 32.
        issue: https://github.com/aiqm/torchani/pull/555
Jinze Xue's avatar
Jinze Xue committed
322
        """
323
        for i in range(5):
324
325
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
Jinze Xue's avatar
Jinze Xue committed
326
                coordinates, species, *_ = pickle.load(f)
327
328
329
330
331
332
333
                # change angstrom coordinates to 10 times smaller
                coordinates = 0.1 * torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)
                _, aev = self.aev_computer((species, coordinates))
                _, cu_aev = self.cuaev_computer((species, coordinates))
                self.assertEqual(cu_aev, aev, atol=5e-5, rtol=5e-5)

Jinze Xue's avatar
Jinze Xue committed
334
    def testVeryDenseMoleculeBackward(self):
335
        for i in range(5):
Jinze Xue's avatar
Jinze Xue committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, *_ = pickle.load(f)
                # change angstrom coordinates to 10 times smaller
                coordinates = 0.1 * torch.from_numpy(coordinates).float().unsqueeze(0).to(self.device)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0).to(self.device)

                _, aev = self.aev_computer((species, coordinates))
                aev.backward(torch.ones_like(aev))
                aev_grad = coordinates.grad

                coordinates = coordinates.clone().detach()
                coordinates.requires_grad_()
                _, cu_aev = self.cuaev_computer((species, coordinates))
                cu_aev.backward(torch.ones_like(cu_aev))
                cuaev_grad = coordinates.grad
                self.assertEqual(cu_aev, aev, atol=5e-5, rtol=5e-5)
                self.assertEqual(cuaev_grad, aev_grad, atol=5e-4, rtol=5e-4)

356
357
358

if __name__ == '__main__':
    unittest.main()