nnp_training_force.py 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
"""
.. _force-training-example:

Train Neural Network Potential To Both Energies and Forces
==========================================================

We have seen how to train a neural network potential by manually writing
training loop in :ref:`training-example`. This tutorial shows how to modify
that script to train to force.
"""

###############################################################################
# Most part of the script are the same as :ref:`training-example`, we will omit
# the comments for these parts. Please refer to :ref:`training-example` for more
# information
import torch
import torchani
import os
import math
import torch.utils.tensorboard
import tqdm

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Rcr = 5.2000e+00
Rca = 3.5000e+00
EtaR = torch.tensor([1.6000000e+01], device=device)
ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device)
Zeta = torch.tensor([3.2000000e+01], device=device)
ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device)
EtaA = torch.tensor([8.0000000e+00], device=device)
ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device)
num_species = 4
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
energy_shifter = torchani.utils.EnergyShifter([
    -0.600952980000,  # H
    -38.08316124000,  # C
    -54.70775770000,  # N
    -75.19446356000,  # O
])
species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HCNO')


try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
49
dspath = os.path.join(path, '../dataset/ani-1x/sample.h5')
50
51
52
53
54
55
56
57

batch_size = 2560

###############################################################################
# The code to create the dataset is a bit different: we need to manually
# specify that ``atomic_properties=['forces']`` so that forces will be read
# from hdf5 files.

58
59
training, validation = torchani.data.load_ani_dataset(
    dspath, species_to_tensor, batch_size, device=device,
60
    atomic_properties=['forces'],
61
    transform=[energy_shifter.subtract_from_dataset], split=[0.8, None])
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

###############################################################################
# When iterating the dataset, we will get pairs of input and output
# ``(species_coordinates, properties)``, in this case, ``properties`` would
# contain a key ``'atomic'`` where ``properties['atomic']`` is a list of dict
# containing forces:

data = training[0]
properties = data[1]
atomic_properties = properties['atomic']
print(type(atomic_properties))
print(list(atomic_properties[0].keys()))

###############################################################################
# Due to padding, part of the forces might be 0
print(atomic_properties[0]['forces'][0])


###############################################################################
# The code to define networks, optimizers, are mostly the same

H_network = torch.nn.Sequential(
    torch.nn.Linear(384, 160),
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

C_network = torch.nn.Sequential(
    torch.nn.Linear(384, 144),
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
model = torch.nn.Sequential(aev_computer, nn).to(device)

###############################################################################
# Here we will turn off weight decay
optimizer = torch.optim.Adam(nn.parameters())

###############################################################################
# This part of the code is also the same
latest_checkpoint = 'force-training-latest.pt'
pretrained = os.path.isfile(latest_checkpoint)


def hartree2kcal(x):
    return 627.509 * x


def validate():
    # run validation
    mse_sum = torch.nn.MSELoss(reduction='sum')
    total_mse = 0.0
    count = 0
    for batch_x, batch_y in validation:
        true_energies = batch_y['energies']
        predicted_energies = []
        for chunk_species, chunk_coordinates in batch_x:
            _, chunk_energies = model((chunk_species, chunk_coordinates))
            predicted_energies.append(chunk_energies)
        predicted_energies = torch.cat(predicted_energies)
        total_mse += mse_sum(predicted_energies, true_energies).item()
        count += predicted_energies.shape[0]
    return hartree2kcal(math.sqrt(total_mse / count))


pretrain_criterion = 10  # kcal/mol
mse = torch.nn.MSELoss(reduction='none')

###############################################################################
# For simplicity, we don't train to force during pretraining
if not pretrained:
    print("pre-training...")
    epoch = 0
    rmse = math.inf
    pretrain_optimizer = torch.optim.Adam(nn.parameters())
    while rmse > pretrain_criterion:
        for batch_x, batch_y in tqdm.tqdm(training):
            true_energies = batch_y['energies']
            predicted_energies = []
            num_atoms = []
            for chunk_species, chunk_coordinates in batch_x:
                num_atoms.append((chunk_species >= 0).sum(dim=1))
                _, chunk_energies = model((chunk_species, chunk_coordinates))
                predicted_energies.append(chunk_energies)
            num_atoms = torch.cat(num_atoms).to(true_energies.dtype)
            predicted_energies = torch.cat(predicted_energies)
            loss = (mse(predicted_energies, true_energies) / num_atoms).mean()
            pretrain_optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        rmse = validate()
        print('RMSE:', rmse, 'Target RMSE:', pretrain_criterion)
    torch.save({
        'nn': nn.state_dict(),
        'optimizer': optimizer.state_dict(),
    }, latest_checkpoint)

scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=100)
tensorboard = torch.utils.tensorboard.SummaryWriter()

checkpoint = torch.load(latest_checkpoint)
nn.load_state_dict(checkpoint['nn'])
optimizer.load_state_dict(checkpoint['optimizer'])
if 'scheduler' in checkpoint:
    scheduler.load_state_dict(checkpoint['scheduler'])


###############################################################################
# In the training loop, we need to compute force, and loss for forces
print("training starting from epoch", scheduler.last_epoch + 1)
202
max_epochs = 20
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
early_stopping_learning_rate = 1.0E-5
force_coefficient = 1  # controls the importance of energy loss vs force loss
best_model_checkpoint = 'force-training-best.pt'

for _ in range(scheduler.last_epoch + 1, max_epochs):
    rmse = validate()
    print('RMSE:', rmse, 'at epoch', scheduler.last_epoch)

    learning_rate = optimizer.param_groups[0]['lr']

    if learning_rate < early_stopping_learning_rate:
        break

    tensorboard.add_scalar('validation_rmse', rmse, scheduler.last_epoch)
    tensorboard.add_scalar('best_validation_rmse', scheduler.best, scheduler.last_epoch)
    tensorboard.add_scalar('learning_rate', learning_rate, scheduler.last_epoch)

    # checkpoint
    if scheduler.is_better(rmse, scheduler.best):
        torch.save(nn.state_dict(), best_model_checkpoint)

    scheduler.step(rmse)

    # Besides being stored in x, species and coordinates are also stored in y.
    # So here, for simplicity, we just ignore the x and use y for everything.
    for i, (_, batch_y) in tqdm.tqdm(enumerate(training), total=len(training)):
        true_energies = batch_y['energies']
        predicted_energies = []
        num_atoms = []
        force_loss = []

        for chunk in batch_y['atomic']:
            chunk_species = chunk['species']
            chunk_coordinates = chunk['coordinates']
            chunk_true_forces = chunk['forces']
            chunk_num_atoms = (chunk_species >= 0).sum(dim=1).to(true_energies.dtype)
            num_atoms.append(chunk_num_atoms)

            # We must set `chunk_coordinates` to make it requires grad, so
            # that we could compute force from it
            chunk_coordinates.requires_grad_(True)

            _, chunk_energies = model((chunk_species, chunk_coordinates))

247
248
249
250
251
252
            # We can use torch.autograd.grad to compute force. Remember to
            # create graph so that the loss of the force can contribute to
            # the gradient of parameters, and also to retain graph so that
            # we can backward through it a second time when computing gradient
            # w.r.t. parameters.
            chunk_forces = -torch.autograd.grad(chunk_energies.sum(), chunk_coordinates, create_graph=True, retain_graph=True)[0]
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

            # Now let's compute loss for force of this chunk
            chunk_force_loss = mse(chunk_true_forces, chunk_forces).sum(dim=(1, 2)) / chunk_num_atoms

            predicted_energies.append(chunk_energies)
            force_loss.append(chunk_force_loss)

        num_atoms = torch.cat(num_atoms)
        predicted_energies = torch.cat(predicted_energies)

        # Now the total loss has two parts, energy loss and force loss
        energy_loss = (mse(predicted_energies, true_energies) / num_atoms).mean()
        energy_loss = 0.5 * (torch.exp(2 * energy_loss) - 1)
        force_loss = torch.cat(force_loss).mean()
        loss = energy_loss + force_coefficient * force_loss

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # write current batch loss to TensorBoard
        tensorboard.add_scalar('batch_loss', loss, scheduler.last_epoch * len(training) + i)

    torch.save({
        'nn': nn.state_dict(),
        'optimizer': optimizer.state_dict(),
        'scheduler': scheduler.state_dict(),
    }, latest_checkpoint)