training-benchmark-nsys-profile.py 9.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torchani
import argparse
import pkbar


WARM_UP_BATCHES = 50
PROFILE_BATCHES = 10


def atomic():
    model = torch.nn.Sequential(
        torch.nn.Linear(384, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 128),
        torch.nn.CELU(0.1),
        torch.nn.Linear(128, 64),
        torch.nn.CELU(0.1),
        torch.nn.Linear(64, 1)
    )
    return model


def time_func(key, func):

    def wrapper(*args, **kwargs):
        torch.cuda.nvtx.range_push(key)
        ret = func(*args, **kwargs)
        torch.cuda.nvtx.range_pop()
        return ret

    return wrapper


def hartree2kcal(x):
    return 627.509 * x


def enable_timers(model):
    torchani.aev.cutoff_cosine = time_func('cutoff_cosine', torchani.aev.cutoff_cosine)
    torchani.aev.radial_terms = time_func('radial_terms', torchani.aev.radial_terms)
    torchani.aev.angular_terms = time_func('angular_terms', torchani.aev.angular_terms)
    torchani.aev.compute_shifts = time_func('compute_shifts', torchani.aev.compute_shifts)
    torchani.aev.neighbor_pairs = time_func('neighbor_pairs', torchani.aev.neighbor_pairs)
    torchani.aev.triu_index = time_func('triu_index', torchani.aev.triu_index)
    torchani.aev.cumsum_from_zero = time_func('cumsum_from_zero', torchani.aev.cumsum_from_zero)
    torchani.aev.triple_by_molecule = time_func('triple_by_molecule', torchani.aev.triple_by_molecule)
    torchani.aev.compute_aev = time_func('compute_aev', torchani.aev.compute_aev)
    model[1].forward = time_func('nn forward', model[1].forward)


if __name__ == "__main__":
    # parse command line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('dataset_path',
                        help='Path of the dataset, can a hdf5 file \
                            or a directory containing hdf5 files')
    parser.add_argument('-b', '--batch_size',
                        help='Number of conformations of each batch',
                        default=2560, type=int)
    parser.add_argument('-o', '--original_dataset_api',
                        help='use original dataset api',
                        dest='dataset',
                        action='store_const',
                        const='original')
    parser.add_argument('-s', '--shuffle_dataset_api',
                        help='use shuffle dataset api',
                        dest='dataset',
                        action='store_const',
                        const='shuffle')
    parser.add_argument('-c', '--cache_dataset_api',
                        help='use cache dataset api',
                        dest='dataset',
                        action='store_const',
                        const='cache')
    parser.set_defaults(dataset='shuffle')
    parser = parser.parse_args()
    parser.device = torch.device('cuda')

    Rcr = 5.2000e+00
    Rca = 3.5000e+00
    EtaR = torch.tensor([1.6000000e+01], device=parser.device)
    ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=parser.device)
    Zeta = torch.tensor([3.2000000e+01], device=parser.device)
    ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=parser.device)
    EtaA = torch.tensor([8.0000000e+00], device=parser.device)
    ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=parser.device)
    num_species = 4
    aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)

    nn = torchani.ANIModel([atomic() for _ in range(4)])
    model = torch.nn.Sequential(aev_computer, nn).to(parser.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.000001)
    mse = torch.nn.MSELoss(reduction='none')

    if parser.dataset == 'shuffle':
        print('using shuffle dataset API')
        print('=> loading dataset...')
        dataset = torchani.data.ShuffledDataset(file_path=parser.dataset_path,
                                                species_order=['H', 'C', 'N', 'O'],
                                                subtract_self_energies=True,
                                                batch_size=parser.batch_size,
                                                num_workers=2)
        print('=> the first batch is ([chunk1, chunk2, ...], {"energies", "force", ...}) in which chunk1=(species, coordinates)')
        chunks, properties = iter(dataset).next()
    elif parser.dataset == 'original':
        print('using original dataset API')
        print('=> loading dataset...')
        energy_shifter = torchani.utils.EnergyShifter(None)
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HCNO')
        dataset = torchani.data.load_ani_dataset(parser.dataset_path, species_to_tensor,
                                                 parser.batch_size, device=parser.device,
                                                 transform=[energy_shifter.subtract_from_dataset])
        print('=> the first batch is ([chunk1, chunk2, ...], {"energies", "force", ...}) in which chunk1=(species, coordinates)')
        chunks, properties = dataset[0]
    elif parser.dataset == 'cache':
        print('using cache dataset API')
        print('=> loading dataset...')
        dataset = torchani.data.CachedDataset(file_path=parser.dataset_path,
                                              species_order=['H', 'C', 'N', 'O'],
                                              subtract_self_energies=True,
                                              batch_size=parser.batch_size)
        print('=> caching all dataset into cpu')
        pbar = pkbar.Pbar('loading and processing dataset into cpu memory, total '
                          + 'batches: {}, batch_size: {}'.format(len(dataset), parser.batch_size),
                          len(dataset))
        for i, t in enumerate(dataset):
            pbar.update(i)
        print('=> the first batch is ([chunk1, chunk2, ...], {"energies", "force", ...}) in which chunk1=(species, coordinates)')
        chunks, properties = dataset[0]

    for i, chunk in enumerate(chunks):
        print('chunk{}'.format(i + 1), list(chunk[0].size()), list(chunk[1].size()))
    print('energies', list(properties['energies'].size()))

    print('=> start warming up')
    total_batch_counter = 0
    for epoch in range(0, WARM_UP_BATCHES + 1):

        print('Epoch: %d/inf' % (epoch + 1,))
        progbar = pkbar.Kbar(target=len(dataset) - 1, width=8)

        for i, (batch_x, batch_y) in enumerate(dataset):

            if total_batch_counter == WARM_UP_BATCHES:
                print('=> warm up finished, start profiling')
                enable_timers(model)
                torch.cuda.cudart().cudaProfilerStart()

150
151
152
            PROFILING_STARTED = (total_batch_counter >= WARM_UP_BATCHES)

            if PROFILING_STARTED:
153
154
155
156
157
158
159
                torch.cuda.nvtx.range_push("batch{}".format(total_batch_counter))

            true_energies = batch_y['energies'].to(parser.device)
            predicted_energies = []
            num_atoms = []

            for j, (chunk_species, chunk_coordinates) in enumerate(batch_x):
160
                if PROFILING_STARTED:
161
162
163
164
                    torch.cuda.nvtx.range_push("chunk{}".format(j))
                chunk_species = chunk_species.to(parser.device)
                chunk_coordinates = chunk_coordinates.to(parser.device)
                num_atoms.append((chunk_species >= 0).to(true_energies.dtype).sum(dim=1))
165
166
                with torch.autograd.profiler.emit_nvtx(enabled=PROFILING_STARTED, record_shapes=True):
                    _, chunk_energies = model((chunk_species, chunk_coordinates))
167
                predicted_energies.append(chunk_energies)
168
                if PROFILING_STARTED:
169
170
171
172
173
174
175
                    torch.cuda.nvtx.range_pop()

            num_atoms = torch.cat(num_atoms)
            predicted_energies = torch.cat(predicted_energies).to(true_energies.dtype)
            loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
            rmse = hartree2kcal((mse(predicted_energies, true_energies)).mean()).detach().cpu().numpy()

176
            if PROFILING_STARTED:
177
                torch.cuda.nvtx.range_push("backward")
178
179
180
            with torch.autograd.profiler.emit_nvtx(enabled=PROFILING_STARTED, record_shapes=True):
                loss.backward()
            if PROFILING_STARTED:
181
182
                torch.cuda.nvtx.range_pop()

183
            if PROFILING_STARTED:
184
                torch.cuda.nvtx.range_push("optimizer.step()")
185
186
187
            with torch.autograd.profiler.emit_nvtx(enabled=PROFILING_STARTED, record_shapes=True):
                optimizer.step()
            if PROFILING_STARTED:
188
189
190
191
                torch.cuda.nvtx.range_pop()

            progbar.update(i, values=[("rmse", rmse)])

192
            if PROFILING_STARTED:
193
194
195
196
197
198
199
200
201
                torch.cuda.nvtx.range_pop()

            total_batch_counter += 1
            if total_batch_counter > WARM_UP_BATCHES + PROFILE_BATCHES:
                break

        if total_batch_counter > WARM_UP_BATCHES + PROFILE_BATCHES:
            print('=> profiling terminate after {} batches'.format(PROFILE_BATCHES))
            break