This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:
Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920)(CVPR 2018)
The operator works on all floating data types and is implemented both for CPU and GPU.
## Installation
Check that `nvcc` is accessible from terminal, e.g. `nvcc --version`.
If not, add cuda (`/usr/local/cuda/bin`) to your `$PATH`.
***root_weight***(Tensor or Variable)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)` (default: `None`)
***bias***(Tensor or Variable)* - Optional bias of shape (out_channels) (default: `None`)