spline_conv.py 1.44 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
import torch

from .degree import node_degree
rusty1s's avatar
rusty1s committed
4
from .utils import spline_basis, spline_weighting
rusty1s's avatar
rusty1s committed
5
6
7


def spline_conv(x,
rusty1s's avatar
rusty1s committed
8
                edge_index,
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14
15
16
                pseudo,
                weight,
                kernel_size,
                is_open_spline,
                root_weight=None,
                degree=1,
                bias=None):

rusty1s's avatar
rusty1s committed
17
18
19
    n, e = x.size(0), edge_index.size(1)
    K, m_in, m_out = weight.size()

rusty1s's avatar
rusty1s committed
20
21
22
    x = x.unsqueeze(-1) if x.dim() == 1 else x

    # Get features for every target node => |E| x M_in
rusty1s's avatar
rusty1s committed
23
    output = x[edge_index[1]]
rusty1s's avatar
rusty1s committed
24
25

    # Get B-spline basis products and weight indices for each edge.
rusty1s's avatar
rusty1s committed
26
    basis, weight_index = spline_basis(degree, pseudo, kernel_size,
rusty1s's avatar
rusty1s committed
27
                                       is_open_spline, K)
rusty1s's avatar
rusty1s committed
28
29
30
31
32

    # Weight gathered features based on B-spline basis and trainable weights.
    output = spline_weighting(output, weight, basis, weight_index)

    # Perform the real convolution => Convert |E| x M_out to N x M_out output.
rusty1s's avatar
rusty1s committed
33
34
    row = edge_index[0].unsqueeze(-1).expand(e, m_out)
    zero = x.new(n, m_out).fill_(0)
rusty1s's avatar
rusty1s committed
35
36
37
    output = zero.scatter_add_(0, row, output)

    # Normalize output by node degree.
rusty1s's avatar
bugfix  
rusty1s committed
38
39
    degree = node_degree(edge_index, n, out=x.new())
    output /= degree.unsqueeze(-1).clamp_(min=1)
rusty1s's avatar
rusty1s committed
40
41
42
43
44
45
46
47
48
49

    # Weight root node separately (if wished).
    if root_weight is not None:
        output += torch.mm(x, root_weight)

    # Add bias (if wished).
    if bias is not None:
        output += bias

    return output