basis_cuda.cu 6.84 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include "basis_cuda.h"

rusty1s's avatar
rusty1s committed
3
4
#include <ATen/cuda/CUDAContext.h>

rusty1s's avatar
rusty1s committed
5
6
#include "utils.cuh"

rusty1s's avatar
rusty1s committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

template <typename scalar_t, int64_t degree> struct Basis {
  static inline __device__ scalar_t forward(scalar_t v, int64_t k_mod) {
    if (degree == 1) {
      return 1. - v - k_mod + 2. * v * k_mod;
    } else if (degree == 2) {
      if (k_mod == 0)
        return 0.5 * v * v - v + 0.5;
      else if (k_mod == 1)
        return -v * v + v + 0.5;
      else
        return 0.5 * v * v;
    } else if (degree == 3) {
      if (k_mod == 0)
        return (1. - v) * (1. - v) * (1. - v) / 6.;
      else if (k_mod == 1)
        return (3. * v * v * v - 6. * v * v + 4.) / 6.;
      else if (k_mod == 2)
        return (-3. * v * v * v + 3. * v * v + 3. * v + 1.) / 6.;
      else
        return v * v * v / 6.;
    } else {
rusty1s's avatar
rusty1s committed
31
      return (scalar_t)-1.;
rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    }
  }

  static inline __device__ scalar_t backward(scalar_t v, int64_t k_mod) {
    if (degree == 1) {
      return 2 * k_mod - 1;
    } else if (degree == 2) {
      if (k_mod == 0)
        return v - 1.;
      else if (k_mod == 1)
        return -2. * v + 1.;
      else
        return v;
    } else if (degree == 3) {
      if (k_mod == 0)
        return (-v * v + 2. * v - 1.) / 2.;
      else if (k_mod == 1)
        return (3. * v * v - 4. * v) / 2.;
      else if (k_mod == 2)
        return (-3. * v * v + 2. * v + 1.) / 2.;
      else
        return v * v / 2.;
    } else {
rusty1s's avatar
rusty1s committed
55
      return (scalar_t)-1.;
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    }
  }
};

template <typename scalar_t, int64_t degree>
__global__ void
spline_basis_fw_kernel(const scalar_t *pseudo, const int64_t *kernel_size,
                       const uint8_t *is_open_spline, scalar_t *basis,
                       int64_t *weight_index, int64_t E, int64_t D, int64_t S,
                       int64_t numel) {

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  const int64_t e = thread_idx / S;
  const int64_t s = thread_idx % S;

  if (thread_idx < numel) {
    int64_t k = s, wi = 0, wi_offset = 1;
    scalar_t b = (scalar_t)1.;

    for (int64_t d = 0; d < D; d++) {
      int64_t k_mod = k % (degree + 1);
      k /= degree + 1;

rusty1s's avatar
rusty1s committed
79
      scalar_t v = pseudo[e * D + d];
rusty1s's avatar
rusty1s committed
80
81
82
83
84
85
86
87
88
89
      v *= kernel_size[d] - degree * is_open_spline[d];

      wi += (((int64_t)v + k_mod) % kernel_size[d]) * wi_offset;
      wi_offset *= kernel_size[d];

      v -= floor(v);
      v = Basis<scalar_t, degree>::forward(v, k_mod);
      b *= v;
    }

rusty1s's avatar
rusty1s committed
90
91
    basis[thread_idx] = b;
    weight_index[thread_idx] = wi;
rusty1s's avatar
rusty1s committed
92
93
94
  }
}

rusty1s's avatar
rusty1s committed
95
std::tuple<torch::Tensor, torch::Tensor>
rusty1s's avatar
rusty1s committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
spline_basis_fw_cuda(torch::Tensor pseudo, torch::Tensor kernel_size,
                     torch::Tensor is_open_spline, int64_t degree) {
  CHECK_CUDA(pseudo);
  CHECK_CUDA(kernel_size);
  CHECK_CUDA(is_open_spline);
  cudaSetDevice(pseudo.get_device());

  CHECK_INPUT(kernel_size.dim() == 1);
  CHECK_INPUT(pseudo.size(1) == kernel_size.numel());
  CHECK_INPUT(is_open_spline.dim());
  CHECK_INPUT(pseudo.size(1) == is_open_spline.numel());

  auto E = pseudo.size(0);
  auto D = pseudo.size(1);
  auto S = (int64_t)(powf(degree + 1, D) + 0.5);

  auto basis = at::empty({E, S}, pseudo.options());
  auto weight_index = at::empty({E, S}, kernel_size.options());

  auto kernel_size_data = kernel_size.data_ptr<int64_t>();
  auto is_open_spline_data = is_open_spline.data_ptr<uint8_t>();
  auto weight_index_data = weight_index.data_ptr<int64_t>();

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(pseudo.scalar_type(), "basis_fw", [&] {
    auto pseudo_data = pseudo.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();

    AT_DISPATCH_DEGREE_TYPES(degree, [&] {
      spline_basis_fw_kernel<scalar_t, DEGREE>
rusty1s's avatar
rusty1s committed
126
          <<<BLOCKS(basis.numel()), THREADS, 0, stream>>>(
rusty1s's avatar
rusty1s committed
127
128
129
130
131
132
              pseudo_data, kernel_size_data, is_open_spline_data, basis_data,
              weight_index_data, E, D, S, basis.numel());
    });
  });

  return std::make_tuple(basis, weight_index);
rusty1s's avatar
rusty1s committed
133
134
}

rusty1s's avatar
rusty1s committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
template <typename scalar_t, int64_t degree>
__global__ void
spline_basis_bw_kernel(const scalar_t *grad_basis, const scalar_t *pseudo,
                       const int64_t *kernel_size,
                       const uint8_t *is_open_spline, scalar_t *grad_pseudo,
                       int64_t E, int64_t D, int64_t S, int64_t numel) {

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  const int64_t e = thread_idx / D;
  const int64_t d = thread_idx % D;

  if (thread_idx < numel) {
    scalar_t g = (scalar_t)0., tmp;

    for (ptrdiff_t s = 0; s < S; s++) {
      int64_t k_mod = (s / (int64_t)(powf(degree + 1, d) + 0.5)) % (degree + 1);

rusty1s's avatar
rusty1s committed
152
      scalar_t v = pseudo[e * D + d];
rusty1s's avatar
rusty1s committed
153
154
155
156
157
158
159
160
161
162
163
      v *= kernel_size[d] - degree * is_open_spline[d];
      v -= floor(v);
      v = Basis<scalar_t, degree>::backward(v, k_mod);
      tmp = v;

      for (int64_t d_it = 1; d_it < D; d_it++) {
        int64_t d_new = d_it - (d >= d_it);
        k_mod = (s / (int64_t)(powf(degree + 1, d_new) + 0.5)) % (degree + 1);
        v = pseudo[e * D + d_new];
        v *= kernel_size[d_new] - degree * is_open_spline[d_new];
        v -= floor(v);
rusty1s's avatar
rusty1s committed
164
        v = Basis<scalar_t, degree>::forward(v, k_mod);
rusty1s's avatar
rusty1s committed
165
166
167
168
169
        tmp *= v;
      }
      g += tmp * grad_basis[e * S + s];
    }
    g *= kernel_size[d] - degree * is_open_spline[d];
rusty1s's avatar
rusty1s committed
170
    grad_pseudo[thread_idx] = g;
rusty1s's avatar
rusty1s committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  }
}

torch::Tensor spline_basis_bw_cuda(torch::Tensor grad_basis,
                                   torch::Tensor pseudo,
                                   torch::Tensor kernel_size,
                                   torch::Tensor is_open_spline,
                                   int64_t degree) {
  CHECK_CUDA(grad_basis);
  CHECK_CUDA(pseudo);
  CHECK_CUDA(kernel_size);
  CHECK_CUDA(is_open_spline);
  cudaSetDevice(grad_basis.get_device());

  CHECK_INPUT(grad_basis.size(0) == pseudo.size(0));
  CHECK_INPUT(kernel_size.dim() == 1);
  CHECK_INPUT(pseudo.size(1) == kernel_size.numel());
  CHECK_INPUT(is_open_spline.dim());
  CHECK_INPUT(pseudo.size(1) == is_open_spline.numel());

  auto E = pseudo.size(0);
  auto D = pseudo.size(1);
  auto S = grad_basis.size(1);

  auto grad_pseudo = at::empty({E, D}, pseudo.options());

  auto kernel_size_data = kernel_size.data_ptr<int64_t>();
  auto is_open_spline_data = is_open_spline.data_ptr<uint8_t>();

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(pseudo.scalar_type(), "basis_bw", [&] {
    auto grad_basis_data = grad_basis.data_ptr<scalar_t>();
    auto pseudo_data = pseudo.data_ptr<scalar_t>();
    auto grad_pseudo_data = grad_pseudo.data_ptr<scalar_t>();

    AT_DISPATCH_DEGREE_TYPES(degree, [&] {
      spline_basis_bw_kernel<scalar_t, DEGREE>
rusty1s's avatar
rusty1s committed
208
          <<<BLOCKS(grad_pseudo.numel()), THREADS, 0, stream>>>(
rusty1s's avatar
rusty1s committed
209
210
211
212
213
214
215
              grad_basis_data, pseudo_data, kernel_size_data,
              is_open_spline_data, grad_pseudo_data, E, D, S,
              grad_pseudo.numel());
    });
  });

  return grad_pseudo;
rusty1s's avatar
rusty1s committed
216
}