utils.py 1.63 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
import torch
from torch.autograd import Function

from .._ext import ffi

rusty1s's avatar
rusty1s committed
6
implemented_degrees = {1: 'linear', 2: 'quadric', 3: 'cubic'}
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
9
10
11
12
13
14
15

def get_func(name, tensor):
    typename = type(tensor).__name__.replace('Tensor', '')
    cuda = 'cuda_' if tensor.is_cuda else ''
    func = getattr(ffi, 'spline_{}_{}{}'.format(name, cuda, typename))
    return func


rusty1s's avatar
rusty1s committed
16
def spline_basis(degree, pseudo, kernel_size, is_open_spline, K):
rusty1s's avatar
rusty1s committed
17
18
19
20
21
    s = (degree + 1)**kernel_size.size(0)
    pseudo = pseudo.unsqueeze(-1) if pseudo.dim() == 1 else pseudo
    basis = pseudo.new(pseudo.size(0), s)
    weight_index = kernel_size.new(pseudo.size(0), s)

rusty1s's avatar
rusty1s committed
22
    degree = implemented_degrees.get(degree)
rusty1s's avatar
rusty1s committed
23
24
25
26
    if degree is None:
        raise NotImplementedError('Basis computation not implemented for '
                                  'specified B-spline degree')

rusty1s's avatar
rusty1s committed
27
    func = get_func('basis_{}'.format(degree), pseudo)
rusty1s's avatar
rusty1s committed
28
29
    func(basis, weight_index, pseudo, kernel_size, is_open_spline, K)
    return basis, weight_index
rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def spline_weighting_forward(x, weight, basis, weight_index):
    pass


def spline_weighting_backward(x, weight, basis, weight_index):
    pass


class SplineWeighting(Function):
    def __init__(self, basis, weight_index):
        super(SplineWeighting, self).__init__()
        self.basis = basis
        self.weight_index = weight_index

    def forward(self, x, weight):
        pass

    def backward(self, grad_output):
        pass


def spline_weighting(x, weight, basis, weight_index):
    if torch.is_tensor(x):
        return spline_weighting_forward(x, weight, basis, weight_index)
    else:
        return SplineWeighting(basis, weight_index)(x, weight)