weighting.py 2.52 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import torch
from torch.autograd import Function

from .utils.ffi import weighting_forward as weighting_fw
from .utils.ffi import weighting_backward_src as weighting_bw_src
from .utils.ffi import weighting_backward_weight as weighting_bw_weight
from .utils.ffi import weighting_backward_basis as weighting_bw_basis


def weighting_forward(src, weight, basis, weight_index):
    output = src.new(src.size(0), weight.size(2))
    weighting_fw(output, src, weight, basis, weight_index)
    return output


rusty1s's avatar
rusty1s committed
16
17
def weighting_backward_src(grad_output, weight, basis,
                           weight_index):  # pragma: no cover
rusty1s's avatar
rusty1s committed
18
19
20
21
22
    grad_src = grad_output.new(grad_output.size(0), weight.size(1))
    weighting_bw_src(grad_src, grad_output, weight, basis, weight_index)
    return grad_src


rusty1s's avatar
rusty1s committed
23
24
def weighting_backward_weight(grad_output, src, basis, weight_index,
                              K):  # pragma: no cover
rusty1s's avatar
rusty1s committed
25
26
27
28
29
    grad_weight = src.new(K, src.size(1), grad_output.size(1))
    weighting_bw_weight(grad_weight, grad_output, src, basis, weight_index)
    return grad_weight


rusty1s's avatar
rusty1s committed
30
31
def weighting_backward_basis(grad_output, src, weight,
                             weight_index):  # pragma: no cover
rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
    grad_basis = src.new(weight_index.size())
    weighting_bw_basis(grad_basis, grad_output, src, weight, weight_index)
    return grad_basis


class SplineWeighting(Function):
rusty1s's avatar
rusty1s committed
38
39
40
    def forward(self, src, weight, basis, weight_index):
        self.save_for_backward(src, weight, basis, weight_index)
        return weighting_forward(src, weight, basis, weight_index)
rusty1s's avatar
rusty1s committed
41

rusty1s's avatar
rusty1s committed
42
    def backward(self, grad_output):  # pragma: no cover
rusty1s's avatar
rusty1s committed
43
        grad_src = grad_weight = grad_basis = None
rusty1s's avatar
rusty1s committed
44
        src, weight, basis, weight_index = self.saved_tensors
rusty1s's avatar
rusty1s committed
45

rusty1s's avatar
rusty1s committed
46
        if self.needs_input_grad[0]:
rusty1s's avatar
rusty1s committed
47
            grad_src = weighting_backward_src(grad_output, weight, basis,
rusty1s's avatar
rusty1s committed
48
                                              weight_index)
rusty1s's avatar
rusty1s committed
49
        if self.needs_input_grad[1]:
rusty1s's avatar
rusty1s committed
50
            K = weight.size(0)
rusty1s's avatar
rusty1s committed
51
            grad_weight = weighting_backward_weight(grad_output, src, basis,
rusty1s's avatar
rusty1s committed
52
53
                                                    weight_index, K)

rusty1s's avatar
rusty1s committed
54
        if self.needs_input_grad[2]:
rusty1s's avatar
rusty1s committed
55
            grad_basis = weighting_backward_basis(grad_output, src, weight,
rusty1s's avatar
rusty1s committed
56
                                                  weight_index)
rusty1s's avatar
rusty1s committed
57

rusty1s's avatar
rusty1s committed
58
        return grad_src, grad_weight, grad_basis, None
rusty1s's avatar
rusty1s committed
59
60
61
62
63
64


def spline_weighting(src, weight, basis, weight_index):
    if torch.is_tensor(src):
        return weighting_forward(src, weight, basis, weight_index)
    else:
rusty1s's avatar
rusty1s committed
65
        return SplineWeighting()(src, weight, basis, weight_index)