spline_conv_test.py 3.28 KB
Newer Older
rusty1s's avatar
rename  
rusty1s committed
1
2
from __future__ import division

rusty1s's avatar
rusty1s committed
3
import unittest
rusty1s's avatar
rename  
rusty1s committed
4
import torch
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
5
from torch.autograd import Variable, gradcheck
rusty1s's avatar
rename  
rusty1s committed
6
7
8
from numpy.testing import assert_almost_equal

from .spline_conv import spline_conv
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
9
10
from .spline_conv_gpu import get_basis_kernel,get_basis_backward_kernel, \
    get_weighting_forward_kernel, get_weighting_backward_kernel, SplineConvGPU
rusty1s's avatar
rename  
rusty1s committed
11
12


rusty1s's avatar
rusty1s committed
13
14
class SplineConvTest(unittest.TestCase):
    @unittest.skipIf(not torch.cuda.is_available(), 'no GPU')
rusty1s's avatar
rename  
rusty1s committed
15
16
17
18
    def test_forward_gpu(self):
        edges = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]])
        values = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]]
        values = torch.FloatTensor(values)
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
19
20
21
        adj = {'indices': edges.cuda(), 'values': Variable(values.cuda()),
               'size': torch.Size([5, 5, 2])}

rusty1s's avatar
rename  
rusty1s committed
22
23
24
25
26
27
28

        kernel_size = torch.cuda.LongTensor([3, 4])
        is_open_spline = torch.cuda.LongTensor([1, 0])

        input = torch.FloatTensor([[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]])
        weight = torch.arange(0.5, 0.5 * 27, step=0.5).view(13, 2, 1)

Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
29
        input, weight = input.cuda(), weight.cuda()
rusty1s's avatar
rename  
rusty1s committed
30
        input, weight = Variable(input), Variable(weight)
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
        K = 12
        in_features = 2
        out_features = 1
        degree = 1
        dim = 2
        k_max = (degree+1)**dim
        fw_k = get_weighting_forward_kernel(in_features, out_features, k_max)
        bw_k = get_weighting_backward_kernel(in_features, out_features, k_max,
                                             K, True)

        basis_fw_k = get_basis_kernel(k_max, K, dim, degree)

        basis_bw_k = get_basis_backward_kernel(k_max, K, dim, degree)

rusty1s's avatar
rename  
rusty1s committed
45
46

        output = spline_conv(
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
47
48
            adj, input, weight, kernel_size, is_open_spline, K, fw_k, bw_k,
            basis_fw_k, basis_bw_k,bp_to_adj=True)
rusty1s's avatar
rename  
rusty1s committed
49
50
51
52
53
54
55
56
57

        expected_output = [
            [(12.5 * 9 + 13 * 10 + 266) / 4],
            [12.5 * 1 + 13 * 2],
            [12.5 * 3 + 13 * 4],
            [12.5 * 5 + 13 * 6],
            [12.5 * 7 + 13 * 8],
        ]
        assert_almost_equal(output.cpu().data.numpy(), expected_output, 1)
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    @unittest.skipIf(not torch.cuda.is_available(), 'no GPU')
    def test_backward(self):
        kernel_size = torch.cuda.LongTensor([3, 4])
        is_open_spline = torch.cuda.LongTensor([1, 0])

        input = torch.randn(4, 2).double().cuda()
        weight = torch.randn(12, 2, 1).double().cuda()
        values = torch.randn(4, 2).double().cuda()
        input = Variable(input, requires_grad=True)
        weight = Variable(weight, requires_grad=True)
        values = Variable(values, requires_grad=True)

        K = 12
        in_features = 2
        out_features = 1
        degree = 1
        dim = 2
        k_max = (degree + 1) ** dim
        fw_k = get_weighting_forward_kernel(in_features, out_features, k_max)
        bw_k = get_weighting_backward_kernel(in_features, out_features, k_max,
                                             K, bp_to_adj=True)

        basis_fw_k = get_basis_kernel(k_max, K, dim, degree)

        basis_bw_k = get_basis_backward_kernel(k_max, K, dim, degree)

        op = SplineConvGPU(kernel_size, is_open_spline, K, degree,
                           basis_fw_k, basis_bw_k, fw_k, bw_k, bp_to_adj=True)

        test = gradcheck(op, (input, weight, values), eps=1e-6, atol=1e-4)
        print(test)
        self.assertTrue(test)