THCWeighting.cu 5.9 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
#include "THCWeighting.h"

#include "common.cuh"
#include "THCNumerics.cuh"
rusty1s's avatar
rusty1s committed
5
#include "THCAtomics.cuh"
rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

template<typename T>
__global__ void weightingForwardKernel(TensorInfo<T> self, TensorInfo<T> src, TensorInfo<T> weight,
                                       TensorInfo<T> basis, TensorInfo<int64_t> weightIndex,
                                       int n) {
  KERNEL_LOOP(i, n) {
    ptrdiff_t e = i / self.size[1], mOut = i % self.size[1], s, mIn;
    T v = ScalarConvert<int, T>::to(0), b, tmp;
    int64_t wi;
    for (s = 0; s < basis.size[1]; s++) {
      b = basis.data[e * basis.stride[0] + s * basis.stride[1]];
      wi = weightIndex.data[e * weightIndex.stride[0] + s * weightIndex.stride[1]];
      for (mIn = 0; mIn < src.size[1]; mIn++) {
        tmp = weight.data[wi * weight.stride[0] + mIn * weight.stride[1] + mOut * weight.stride[2]];
        tmp = THCNumerics<T>::mul(tmp, src.data[e * src.stride[0] + mIn * src.stride[1]]);
rusty1s's avatar
rusty1s committed
21
        tmp = THCNumerics<T>::mul(tmp, b);
rusty1s's avatar
rusty1s committed
22
23
24
25
26
27
28
        v = THCNumerics<T>::add(v, tmp);
      }
    }
    self.data[e * self.stride[0] + mOut * self.stride[1]] = v;
  }
}

rusty1s's avatar
rusty1s committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
template<typename T>
__global__ void weightingBackwardSrcKernel(TensorInfo<T> self, TensorInfo<T> gradOutput,
                                           TensorInfo<T> weight, TensorInfo<T> basis,
                                           TensorInfo<int64_t> weightIndex, int n) {
  KERNEL_LOOP(i, n) {
    ptrdiff_t e = i / self.size[1], mIn = i % self.size[1], s, mOut;
    T v = ScalarConvert<int, T>::to(0), b, tmp;
    int64_t wi;
    for (s = 0; s < basis.size[1]; s++) {
      b = basis.data[e * basis.stride[0] + s * basis.stride[1]];
      wi = weightIndex.data[e * weightIndex.stride[0] + s * weightIndex.stride[1]];
      for (mOut = 0; mOut < gradOutput.size[1]; mOut++) {
        tmp = weight.data[wi * weight.stride[0] + mOut * weight.stride[1] + mIn * weight.stride[2]];
        tmp = THCNumerics<T>::mul(tmp, gradOutput.data[e * gradOutput.stride[0] + mOut * gradOutput.stride[1]]);
        tmp = THCNumerics<T>::mul(tmp, b);
        v = THCNumerics<T>::add(v, tmp);
      }
    }
    self.data[e * self.stride[0] + mIn * self.stride[1]] = v;
  }
}

rusty1s's avatar
rusty1s committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
template<typename T>
__global__ void weightingBackwardWeightKernel(TensorInfo<T> self, TensorInfo<T> gradOutput,
                                              TensorInfo<T> src, TensorInfo<T> basis,
                                              TensorInfo<int64_t> weightIndex, int n) {
  KERNEL_LOOP(i, n) {
    ptrdiff_t e = i / gradOutput.size[1], mOut = i % gradOutput.size[1], s, mIn;
    T b, v;
    int64_t wi;
    T g = gradOutput.data[e * gradOutput.stride[0] + mOut * gradOutput.stride[1]];
    for (s = 0; s < weightIndex.size[1]; s++) {
      b = basis.data[e * basis.stride[0] + s * basis.stride[1]];
      wi = weightIndex.data[e * weightIndex.stride[0] + s * weightIndex.stride[1]];
      for (mIn = 0; mIn < src.size[1]; mIn++) {
        v = src.data[e * src.stride[0] + mIn * src.stride[1]];
        v = THCNumerics<T>::mul(v, b);
        v = THCNumerics<T>::mul(v, g);
        atomicAdd(&self.data[wi * self.stride[0] + mIn * self.stride[1] + mOut * self.stride[2]], v);
      }
    }
  }
}

rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
template<typename T>
__global__ void weightingBackwardBasisKernel(TensorInfo<T> self, TensorInfo<T> gradOutput,
                                             TensorInfo<T> src, TensorInfo<T> weight,
                                             TensorInfo<int64_t> weightIndex, int n) {
  KERNEL_LOOP(i, n) {
    ptrdiff_t e = i / gradOutput.size[1], mOut = i % gradOutput.size[1], s, mIn;
rusty1s's avatar
rusty1s committed
79
    T v, tmp;
rusty1s's avatar
rusty1s committed
80
    int64_t wi;
rusty1s's avatar
rusty1s committed
81
    T g = gradOutput.data[e * gradOutput.stride[0] + mOut * gradOutput.stride[1]];
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    for (s = 0; s < weightIndex.size[1]; s++) {
      v = ScalarConvert<int, T>::to(0);
      wi = weightIndex.data[e * weightIndex.stride[0] + s * weightIndex.stride[1]];
      for (mIn = 0; mIn < src.size[1]; mIn++) {
        tmp = weight.data[wi * weight.stride[0] + mIn * weight.stride[1] + mOut * weight.stride[2]];
        tmp = THCNumerics<T>::mul(tmp, src.data[e * src.stride[0] + mIn * src.stride[1]]);
        tmp = THCNumerics<T>::mul(tmp, g);
        v = THCNumerics<T>::add(v, tmp);
      }
      atomicAdd(&self.data[e * self.stride[0] + s * self.stride[1]], v);
    }
  }
}

rusty1s's avatar
rusty1s committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
template<typename T>
__global__ void weightingBackwardKernel(TensorInfo<T> gradSrc, TensorInfo<T> gradWeight,
                                        TensorInfo<T> gradBasis, TensorInfo<T> gradOutput,
                                        TensorInfo<T> src, TensorInfo<T> weight,
                                        TensorInfo<T> basis, TensorInfo<int64_t> weightIndex,
                                        int n) {
  KERNEL_LOOP(i, n) {
    ptrdiff_t e = i / src.size[1], mIn = i % src.size[1], s, mOut;
    T b, g, w, gs = ScalarConvert<int, T>::to(0), gw, gb;
    int64_t wi;
    T f = src.data[e * src.stride[0] + mIn * src.stride[1]];
    for (s = 0; s < basis.size[1]; s++) {
      b = basis.data[e * basis.stride[0] + s * basis.stride[1]];
      wi = weightIndex.data[e * weightIndex.stride[0] + s * weightIndex.stride[1]];
      gb = ScalarConvert<int, T>::to(0);
      for (mOut = 0; mOut < gradOutput.size[1]; mOut++) {
        g = gradOutput.data[e * gradOutput.stride[0] + mOut * gradOutput.stride[1]];
        w = weight.data[wi * weight.stride[0] + mOut * weight.stride[1] + mIn * weight.stride[2]];

        gs = THCNumerics<T>::add(gs, THCNumerics<T>::mul(THCNumerics<T>::mul(b, g), w));

        gw = THCNumerics<T>::mul(THCNumerics<T>::mul(f, b), g);
        atomicAdd(&gradWeight.data[wi * gradWeight.stride[0] + mOut * gradWeight.stride[1] + mIn * gradWeight.stride[2]], gw);

        gb = THCNumerics<T>::add(gb, THCNumerics<T>::mul(THCNumerics<T>::mul(g, f), w));
      }
      atomicAdd(&gradBasis.data[e * gradBasis.stride[0] + s * gradBasis.stride[1]], gb);
    }
    gradSrc.data[e * gradSrc.stride[0] + mIn * gradSrc.stride[1]] = gs;
  }
}

rusty1s's avatar
rusty1s committed
128
129
#include "generic/THCWeighting.cu"
#include "THC/THCGenerateFloatTypes.h"