spline_conv_gpu.py 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch
from torch.autograd import Function

from ....utils.cuda import (cuda_num_threads, Stream, load_kernel, kernel_loop,
                            get_blocks)

_edgewise_spline_weighting_forward_kernel = kernel_loop + '''
extern "C"
__global__ void edgewise_spline_weighting_forward_kernel(
const ${Dtype}* input, const ${Dtype}* weight, ${Dtype}* output,
const ${Dtype}* amount, const long* index, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${M_out};
    const int m_out_idx = idx % ${M_out};

    ${Dtype} result = 0.0;
    ${Dtype} w;
    ${Dtype} f;
    int k;
    ${Dtype} b;
    long c;
    long w_idx;

    for (int k_idx = 0; k_idx < ${k_max}; k_idx++) {
      k = e_idx * ${k_max} + k_idx;
      b = amount[k];
      c = index[k];

      for (int m_in_idx = 0; m_in_idx < ${M_in}; m_in_idx++) {
        w_idx = c * ${M_out} * ${M_in} +
                m_in_idx * ${M_out} +
                m_out_idx;

        w = weight[w_idx];
        f = input[e_idx * ${M_in} + m_in_idx];

        result += b * w * f;
      }
    }

    output[idx] = result;
  }
}
'''

_edgewise_spline_weighting_backward_kernel = kernel_loop + '''
extern "C"
__global__ void edgewise_spline_weighting_backward_kernel(
const ${Dtype}* grad_output, ${Dtype}* grad_input, ${Dtype}* grad_weight,
const ${Dtype}* input, const ${Dtype}* weight, const ${Dtype}* amount,
const long* index, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${M_out};
    const int m_out_idx = idx % ${M_out};

    ${Dtype} w;
    ${Dtype} g;
    ${Dtype} f;
    ${Dtype} w_grad;
    int k;
    ${Dtype} b;
    long c;
    long w_idx;

    for (int k_idx = 0; k_idx < ${k_max}; k_idx++) {
      k = e_idx * ${k_max} + k_idx;
      b = amount[k];
      c = index[k];

      for (int m_in_idx = 0; m_in_idx < ${M_in}; m_in_idx++) {
        w_idx = c * ${M_out} * ${M_in} +
                m_in_idx * ${M_out} +
                m_out_idx;

        w = weight[w_idx];

        // Calculate input gradient.
        g = grad_output[e_idx * ${M_out} + m_out_idx];
        atomicAdd(&(grad_input[e_idx * ${M_in} + m_in_idx]), b * w * g);
        // This is inefficient: `reduce_sum` shouldn't be done like this.
        // Looping over `M_out` would be better to avoid the `atomicAdd`.

        // Calculate weight gradient.
        f = input[e_idx * ${M_in} + m_in_idx];
        w_grad = f * b * g;
        atomicAdd(&(grad_weight[w_idx]), w_grad);
        // Not so efficient either, but not avoidable.
      }
    }
  }
}
'''

_edgewise_spline_weighting_backward_kernel_bp2adj = kernel_loop + '''
extern "C"
__global__ void edgewise_spline_weighting_backward_kernel(
const ${Dtype}* grad_output, ${Dtype}* grad_input, ${Dtype}* grad_weight, 
${Dtype}* grad_amount, const ${Dtype}* input, const ${Dtype}* weight, 
const ${Dtype}* amount, const long* index, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${M_out};
    const int m_out_idx = idx % ${M_out};

    ${Dtype} w;
    ${Dtype} g;
    ${Dtype} f;
    ${Dtype} w_grad;
    int k;
    ${Dtype} b;
    long c;
    long w_idx;

    for (int k_idx = 0; k_idx < ${k_max}; k_idx++) {
      k = e_idx * ${k_max} + k_idx;
      b = amount[k];
      c = index[k];

      for (int m_in_idx = 0; m_in_idx < ${M_in}; m_in_idx++) {
        w_idx = c * ${M_out} * ${M_in} +
                m_in_idx * ${M_out} +
                m_out_idx;

        w = weight[w_idx];

        // Calculate input gradient.
        g = grad_output[e_idx * ${M_out} + m_out_idx];
        atomicAdd(&(grad_input[e_idx * ${M_in} + m_in_idx]), b * w * g);
        // This is inefficient: `reduce_sum` shouldn't be done like this.
        // Looping over `M_out` would be better to avoid the `atomicAdd`.

        // Calculate weight gradient.
        f = input[e_idx * ${M_in} + m_in_idx];
        w_grad = f * b * g;
        atomicAdd(&(grad_weight[w_idx]), w_grad);
        // Not so efficient either, but not avoidable.

        // Calculate B-spline basis tensor product gradient
        adj_g += g * f * w;
      }
      atomicAdd(&(grad_amount[e_idx,k_idx]), adj_g);
    }
  }
}
'''


def get_weighting_forward_kernel(M_in, M_out, k_max, bt_to_adj=False):
    cuda_tensor = torch.FloatTensor([1]).cuda()
    if bt_to_adj:
        kernel = _edgewise_spline_weighting_forward_kernel
    else:

        kernel = _edgewise_spline_weighting_forward_kernel
    with torch.cuda.device_of(cuda_tensor):
        f_fw = load_kernel(
            'edgewise_spline_weighting_forward_kernel',
            kernel,
            Dtype='float',
            M_in=M_in,
            M_out=M_out,
            k_max=k_max)
    return f_fw


def get_weighting_backward_kernel(M_in, M_out, k_max, K, bt_to_adj=False):
    cuda_tensor = torch.FloatTensor([1]).cuda()
    if bt_to_adj:
        kernel = _edgewise_spline_weighting_backward_kernel_bp2adj
    else:

        kernel = _edgewise_spline_weighting_backward_kernel
    with torch.cuda.device_of(cuda_tensor):
        f_bw = load_kernel(
            'edgewise_spline_weighting_backward_kernel',
            kernel,
            Dtype='float',
            M_in=M_in,
            M_out=M_out,
            k_max=k_max,
            K=K)
    return f_bw


_spline_kernel_linear = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, ${Dtype}* amount, long* index,
const long* kernel_size, const long* is_open_spline, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${k_max};
    int k_idx = idx % ${k_max};

    int K = 1.0;
    int k_idx_mod;
    int bot;
    int top;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} a = 1.0;
    long i = 0;

    for (int d_idx = 0; d_idx < ${dim}; d_idx++) {
      k_idx_mod = k_idx % 2;
      k_idx >>= 1;

      value = input[e_idx * ${dim} + d_idx];
      if(value==1.0)
        value -= 0.000001;
      value *= kernel_size[d_idx] - is_open_spline[d_idx];
        
      frac = value - floor(value);

      a *= (1 - k_idx_mod) * (1 - frac) + k_idx_mod * frac;

      bot = int(floor(value));
      top = (bot + 1) % kernel_size[d_idx];
      bot %= kernel_size[d_idx];
      i += ((1 - k_idx_mod) * bot + k_idx_mod * top) * K;
      K *= kernel_size[d_idx];
    }

    amount[idx] = a;
    index[idx] = i;
  }
}
'''

_spline_kernel_quadratic = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, ${Dtype}* amount, long* index,
const long* kernel_size, const long* is_open_spline, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${k_max};
    int k_idx = idx % ${k_max};

    int K = ${K};
    int k_idx_mod;
    int pos;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} a = 1.0;
    long i = 0;

    for (int d_idx = 0; d_idx < ${dim}; d_idx++) {

      K /= kernel_size[d_idx];

      k_idx_mod = k_idx % 3;
      k_idx /= 3;

      value = input[e_idx * ${dim} + d_idx] *
              (kernel_size[d_idx] - (2 * is_open_spline[d_idx]));

      frac = value - floor(value);

      if (k_idx_mod == 0) a *= 0.5 * (1- frac) * (1-frac);
      else if (k_idx_mod == 1) a *= -frac * frac + frac + 0.5;
      else a *= 0.5 * frac * frac;

      pos = int(floor(value)) + k_idx_mod;
      pos %= kernel_size[d_idx];

      i += pos * K;
    }
    amount[idx] = a;
    index[idx] = i;
  }
}
'''

_spline_kernel_cubic = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, ${Dtype}* amount, long* index,
const long* kernel_size, const long* is_open_spline, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads}) {

    const int e_idx = idx / ${k_max};
    int k_idx = idx % ${k_max};

    int K = ${K};
    int k_idx_mod;
    int pos;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} a = 1.0;
    long i = 0;

    for (int d_idx = 0; d_idx < ${dim}; d_idx++) {

      K /= kernel_size[d_idx];

      k_idx_mod = k_idx % 4;
      k_idx /= 4;

      value = input[e_idx * ${dim} + d_idx] *
              (kernel_size[d_idx] - (3 * is_open_spline[d_idx]));

      frac = value - floor(value);

      if (k_idx_mod == 0) a *= (1 - frac) * (1 - frac) * (1 - frac) / 6.0;
      else if (k_idx_mod == 1)
        a *= (3 * frac * frac * frac - 6 * frac * frac + 4) / 6.0;
      else if (k_idx_mod == 2)
        a *= (-3 * frac * frac * frac + 3 * frac * frac + 3 * frac + 1) / 6.0;
      else a *= frac * frac * frac / 6.0;

      pos = int(floor(value)) + k_idx_mod;
      pos %= kernel_size[d_idx];

      i += pos * K;
    }
    amount[idx] = a;
    index[idx] = i;
  }
}
'''

_spline_kernel_linear_backward = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, const ${Dtype}* grad_amount, ${Dtype}* amount, 
${Dtype}* grad_adj, const long* kernel_size, const long* is_open_spline, 
int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${dim};
    int d_idx = idx % ${dim};

    int K = ${K};
    int k_idx_mod;
    int bot;
    int top;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} grad_out = 0.0;
    long i = 0;
    
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
352
    int quotient = (int)pow(2.0,(float)d_idx);
353
354
355
356
357
358
359
360
361
    
    for (int k_idx = 0; k_idx < ${k_max}; k_idx++) {
      
      k_idx_mod = (k_idx/quotient) % 2;

      value = input[e_idx * ${dim} + d_idx];
      value *= kernel_size[d_idx] - is_open_spline[d_idx];

      frac = value - floor(value);
Jan Eric Lenssen's avatar
Jan Eric Lenssen committed
362
      residual = (1 - k_idx_mod) * (frac - 1) + k_idx_mod * frac;
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
      int a_idx = e_idx*${k_max} + k_idx
      grad_out += grad_amount[a_idx]*amount[a_idx]/residual;

    }
    grad_adj[e_idx* ${dim} + d_idx] = grad_out;
  }
}
'''


def get_basis_kernel(k_max, K, dim, degree, bt_to_adj=False):
    if degree == 3:
        _spline_kernel = _spline_kernel_cubic
    elif degree == 2:
        _spline_kernel = _spline_kernel_quadratic
    else:
        _spline_kernel = _spline_kernel_linear

    cuda_tensor = torch.FloatTensor([1]).cuda()
    with torch.cuda.device_of(cuda_tensor):
        f = load_kernel(
            'spline_kernel',
            _spline_kernel,
            Dtype='float',
            k_max=k_max,
            dim=dim,
            K=K)
    return f


def get_basis_backward_kernel(k_max, K, dim, degree):
    if degree == 3:
        _spline_kernel = _spline_kernel_cubic
    elif degree == 2:
        _spline_kernel = _spline_kernel_quadratic
    else:
        _spline_kernel = _spline_kernel_linear_backward

    cuda_tensor = torch.FloatTensor([1]).cuda()
    with torch.cuda.device_of(cuda_tensor):
        f = load_kernel(
            'spline_kernel',
            _spline_kernel,
            Dtype='float',
            k_max=k_max,
            dim=dim,
            K=K)
    return f


class SplineConvGPU(Function):
    def __init__(self, kernel_size, is_open_spline, K, degree,
                               basis_kernel, basis_backward_kernel,
                               weighting_kernel, weighting_backward_kernel,
                               bp_to_adj=False):
        super(SplineConvGPU, self).__init__()
        self.degree = degree
        self.f_weighting_fw = weighting_kernel
        self.f_weighting_bw = weighting_backward_kernel
        self.kernel_size = kernel_size
        self.is_open_spline = is_open_spline
        self.f_basis_fw = basis_kernel
        self.f_basis_bw = basis_backward_kernel
        self.bp_to_adj = bp_to_adj

    def forward(self, input, weight, adj_values):
        assert input.is_cuda and weight.is_cuda

        self.K, self.M_in, self.M_out = weight.size()

        # Compute B-spline basis tensor products
        adj_values = adj_values.unsqueeze(1) if len(adj_values.size()) < 2 \
            else adj_values
        num_edges, dim = adj_values.size()
        k_max = 2 ** dim

        amount = adj_values.new(num_edges, k_max)
        index = adj_values.new(num_edges, k_max).long()
        num_threads = amount.numel()

        with torch.cuda.device_of(input):
            self.f_basis_fw(
                block=(cuda_num_threads, 1, 1),
                grid=(get_blocks(num_threads), 1, 1),
                args=[
                    adj_values.data_ptr(),
                    amount.data_ptr(),
                    index.data_ptr(),
                    self.kernel_size.data_ptr(),
                    self.is_open_spline.data_ptr(), num_threads
                ],
                stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

        # Weight features
        output = input.new(input.size(0), self.M_out)
        num_threads = output.numel()

        with torch.cuda.device_of(input):
            self.f_weighting_fw(
                block=(cuda_num_threads, 1, 1),
                grid=(get_blocks(num_threads), 1, 1),
                args=[
                    input.data_ptr(),
                    weight.data_ptr(),
                    output.data_ptr(),
                    amount.data_ptr(),
                    index.data_ptr(), num_threads
                ],
                stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

        if self.bp_to_adj:
            self.save_for_backward(input, weight, adj_values, amount, index)
        else:
            self.save_for_backward(input, weight, amount, index)

        return output

    def backward(self, grad_output):
        grad_input = grad_output.new(grad_output.size(0), self.M_in).fill_(0)
        grad_weight = grad_output.new(self.K, self.M_in, self.M_out).fill_(0)
        num_threads = grad_output.numel()

        if self.bp_to_adj:
            input, weight, adj_values, amount, index = self.saved_tensors
            grad_amount = grad_output.new(amount.size(0),
                                          amount.size(1)).fill_(0)
            with torch.cuda.device_of(grad_output):
                self.f_weighting_bw(
                    block=(cuda_num_threads, 1, 1),
                    grid=(get_blocks(num_threads), 1, 1),
                    args=[
                        grad_output.data_ptr(),
                        grad_input.data_ptr(),
                        grad_weight.data_ptr(),
                        grad_amount.data_ptr(),
                        input.data_ptr(),
                        weight.data_ptr(),
                        amount.data_ptr(),
                        index.data_ptr(), num_threads
                    ],
                    stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

            num_threads = grad_amount.numel()
            grad_adj = grad_amount.new(grad_amount.size(0),
                                       self.kernel_size.size(0)).fill_(0)

            with torch.cuda.device_of(grad_amount):
                self.f_basis_bw(
                    block=(cuda_num_threads, 1, 1),
                    grid=(get_blocks(num_threads), 1, 1),
                    args=[
                        adj_values.data_ptr(),
                        grad_amount.data_ptr(),
                        amount.data_ptr(),
                        grad_adj.data_ptr(),
                        self.kernel_size.data_ptr(),
                        self.is_open_spline.data_ptr(), num_threads
                    ],
                    stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

            return grad_input, grad_weight, grad_adj

        else:
            input, weight, amount, index = self.saved_tensors
            with torch.cuda.device_of(grad_output):
                self.f_weighting_bw(
                    block=(cuda_num_threads, 1, 1),
                    grid=(get_blocks(num_threads), 1, 1),
                    args=[
                        grad_output.data_ptr(),
                        grad_input.data_ptr(),
                        grad_weight.data_ptr(),
                        input.data_ptr(),
                        weight.data_ptr(),
                        amount.data_ptr(),
                        index.data_ptr(), num_threads
                    ],
                    stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

            return grad_input, grad_weight