weighting_hip.hip 8.72 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include "hip/hip_runtime.h"
#include "weighting_hip.h"

#include <ATen/hip/HIPContext.h>

#include "atomics.cuh"
#include "utils.cuh"

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

template <typename scalar_t>
__global__ void
spline_weighting_fw_kernel(const scalar_t *x, const scalar_t *weight,
                           const scalar_t *basis, const int64_t *weight_index,
                           scalar_t *out, int64_t E, int64_t M_in,
                           int64_t M_out, int64_t S, int64_t numel) {

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  const int64_t e = thread_idx / M_out;
  const int64_t m_out = thread_idx % M_out;

  if (thread_idx < numel) {
    scalar_t v = (scalar_t)0.;

    for (ptrdiff_t s = 0; s < S; s++) {
      const scalar_t b = basis[e * S + s];
      const int64_t wi = weight_index[e * S + s];
      for (int64_t m_in = 0; m_in < M_in; m_in++) {
        scalar_t tmp = weight[wi * M_in * M_out + m_in * M_out + m_out];
        tmp *= b * x[e * M_in + m_in];
        v += tmp;
      }
    }
    out[thread_idx] = v;
  }
}

torch::Tensor spline_weighting_fw_cuda(torch::Tensor x, torch::Tensor weight,
                                       torch::Tensor basis,
                                       torch::Tensor weight_index) {
  CHECK_CUDA(x);
  CHECK_CUDA(weight);
  CHECK_CUDA(basis);
  CHECK_CUDA(weight_index);
  hipSetDevice(x.get_device());

  CHECK_INPUT(x.size(1) == weight.size(1));

  auto E = x.size(0);
  auto M_in = x.size(1);
  auto M_out = weight.size(2);
  auto S = basis.size(1);

  auto out = at::empty({E, M_out}, x.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "weighting_fw", [&] {
    auto x_data = x.data_ptr<scalar_t>();
    auto weight_data = weight.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    spline_weighting_fw_kernel<scalar_t>
        <<<BLOCKS(out.numel()), THREADS, 0, stream>>>(
            x_data, weight_data, basis_data, weight_index_data, out_data, E,
            M_in, M_out, S, out.numel());
  });

  return out;
}

template <typename scalar_t>
__global__ void
spline_weighting_bw_x_kernel(const scalar_t *grad_out, const scalar_t *weight,
                             const scalar_t *basis, const int64_t *weight_index,
                             scalar_t *grad_x, int64_t E, int64_t M_in,
                             int64_t M_out, int64_t S, int64_t numel) {

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  const int64_t e = thread_idx / M_in;
  const int64_t m_in = thread_idx % M_in;

  if (thread_idx < numel) {
    scalar_t v = (scalar_t)0.;

    for (int64_t s = 0; s < S; s++) {
      const scalar_t b = basis[e * S + s];
      const int64_t wi = weight_index[e * S + s];

      for (int64_t m_out = 0; m_out < M_out; m_out++) {
        scalar_t tmp = weight[wi * M_out * M_in + m_out * M_in + m_in];
        tmp *= b * grad_out[e * M_out + m_out];
        v += tmp;
      }
    }
    grad_x[thread_idx] = v;
  }
}

torch::Tensor spline_weighting_bw_x_cuda(torch::Tensor grad_out,
                                         torch::Tensor weight,
                                         torch::Tensor basis,
                                         torch::Tensor weight_index) {
  CHECK_CUDA(grad_out);
  CHECK_CUDA(weight);
  CHECK_CUDA(basis);
  CHECK_CUDA(weight_index);
  hipSetDevice(grad_out.get_device());

  CHECK_INPUT(grad_out.size(1) == weight.size(2));

  auto E = grad_out.size(0);
  auto M_in = weight.size(1);
  auto M_out = grad_out.size(1);
  auto S = basis.size(1);

  auto grad_x = at::zeros({E, M_in}, grad_out.options());
  weight = weight.transpose(1, 2).contiguous(); // Contiguous memory-access.

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(grad_out.scalar_type(), "weighting_bw_x", [&] {
    auto grad_out_data = grad_out.data_ptr<scalar_t>();
    auto weight_data = weight.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();
    auto grad_x_data = grad_x.data_ptr<scalar_t>();

    spline_weighting_bw_x_kernel<scalar_t>
        <<<BLOCKS(grad_x.numel()), THREADS, 0, stream>>>(
            grad_out_data, weight_data, basis_data, weight_index_data,
            grad_x_data, E, M_in, M_out, S, grad_x.numel());
  });

  return grad_x;
}

template <typename scalar_t>
__global__ void spline_weighting_bw_weight_kernel(
    const scalar_t *grad_out, const scalar_t *x, const scalar_t *basis,
    const int64_t *weight_index, scalar_t *grad_weight, int64_t E, int64_t M_in,
    int64_t M_out, int64_t S, int64_t numel) {

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  const int64_t e = thread_idx / M_out;
  const int64_t m_out = thread_idx % M_out;

  if (thread_idx < numel) {
    auto g = grad_out[e * M_out + m_out];
    for (int64_t s = 0; s < S; s++) {
      const scalar_t b = basis[e * S + s];
      const int64_t wi = weight_index[e * S + s];

      for (int64_t m_in = 0; m_in < M_in; m_in++) {
        auto v = g * b * x[e * M_in + m_in];
        atomAdd(&grad_weight[wi * M_in * M_out + m_in * M_out + m_out], v);
      }
    }
  }
}

torch::Tensor spline_weighting_bw_weight_cuda(torch::Tensor grad_out,
                                              torch::Tensor x,
                                              torch::Tensor basis,
                                              torch::Tensor weight_index,
                                              int64_t kernel_size) {
  CHECK_CUDA(grad_out);
  CHECK_CUDA(x);
  CHECK_CUDA(basis);
  CHECK_CUDA(weight_index);
  hipSetDevice(grad_out.get_device());

  auto E = grad_out.size(0);
  auto M_in = x.size(1);
  auto M_out = grad_out.size(1);
  auto S = basis.size(1);

  auto grad_weight = at::zeros({kernel_size, M_in, M_out}, grad_out.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "weighting_bw_weight", [&] {
    auto grad_out_data = grad_out.data_ptr<scalar_t>();
    auto x_data = x.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();
    auto grad_weight_data = grad_weight.data_ptr<scalar_t>();

    spline_weighting_bw_weight_kernel<scalar_t>
        <<<BLOCKS(grad_out.numel()), THREADS, 0, stream>>>(
            grad_out_data, x_data, basis_data, weight_index_data,
            grad_weight_data, E, M_in, M_out, S, grad_out.numel());
  });

  return grad_weight;
}

template <typename scalar_t>
__global__ void spline_weighting_bw_basis_kernel(
    const scalar_t *grad_out, const scalar_t *x, const scalar_t *weight,
    const int64_t *weight_index, scalar_t *grad_basis, int64_t E, int64_t M_in,
    int64_t M_out, int64_t S, int64_t numel) {

  const size_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  const int64_t e = thread_idx / M_out;
  const int64_t m_out = thread_idx % M_out;

  if (thread_idx < numel) {
    const scalar_t g = grad_out[e * M_out + m_out];

    for (int64_t s = 0; s < S; s++) {
      scalar_t v = (scalar_t)0.;
      const int64_t wi = weight_index[e * S + s];

      for (int64_t m_in = 0; m_in < M_in; m_in++) {
        const scalar_t w = weight[wi * M_in * M_out + m_in * M_out + m_out];
        v += g * w * x[e * M_in + m_in];
      }
      atomAdd(&grad_basis[e * S + s], v);
    }
  }
}

torch::Tensor spline_weighting_bw_basis_cuda(torch::Tensor grad_out,
                                             torch::Tensor x,
                                             torch::Tensor weight,
                                             torch::Tensor weight_index) {
  CHECK_CUDA(grad_out);
  CHECK_CUDA(x);
  CHECK_CUDA(weight);
  CHECK_CUDA(weight_index);
  hipSetDevice(grad_out.get_device());

  CHECK_INPUT(x.size(1) == weight.size(1));
  CHECK_INPUT(grad_out.size(1) == weight.size(2));

  auto E = grad_out.size(0);
  auto M_in = x.size(1);
  auto M_out = grad_out.size(1);
  auto S = weight_index.size(1);

  auto grad_basis = at::zeros({E, S}, grad_out.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "weighting_bw_basis", [&] {
    auto grad_out_data = grad_out.data_ptr<scalar_t>();
    auto x_data = x.data_ptr<scalar_t>();
    auto weight_data = weight.data_ptr<scalar_t>();
    auto grad_basis_data = grad_basis.data_ptr<scalar_t>();

    spline_weighting_bw_basis_kernel<scalar_t>
        <<<BLOCKS(grad_out.numel()), THREADS, 0, stream>>>(
            grad_out_data, x_data, weight_data, weight_index_data,
            grad_basis_data, E, M_in, M_out, S, grad_out.numel());
  });

  return grad_basis;
}