weighting_cpu.cpp 6.22 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include "weighting_cpu.h"

#include "utils.h"

torch::Tensor spline_weighting_fw_cpu(torch::Tensor x, torch::Tensor weight,
                                      torch::Tensor basis,
                                      torch::Tensor weight_index) {
  CHECK_CPU(x);
  CHECK_CPU(weight);
  CHECK_CPU(basis);
  CHECK_CPU(weight_index);

  CHECK_INPUT(x.size(1) == weight.size(1));

  auto E = x.size(0);
  auto M_in = x.size(1);
  auto M_out = weight.size(2);
  auto S = basis.size(1);

  auto out = at::empty({E, M_out}, x.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "weighting_fw", [&] {
    auto x_data = x.data_ptr<scalar_t>();
    auto weight_data = weight.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    scalar_t v;

    for (int64_t e = 0; e < E; e++) {
      for (int64_t m_out = 0; m_out < M_out; m_out++) {
        v = 0;
        for (int64_t s = 0; s < S; s++) {
          auto b = basis_data[e * S + s];
          auto wi = weight_index_data[e * S + s];
          for (int64_t m_in = 0; m_in < M_in; m_in++) {
            auto tmp =
                weight_data[wi * weight.stride(0) + m_in * weight.stride(1) +
                            m_out * weight.stride(2)];
            tmp *= b * x_data[e * x.stride(0) + m_in * x.stride(1)];
            v += tmp;
          }
        }
        out_data[e * M_out + m_out] = v;
      }
    }
  });

  return out;
}

torch::Tensor spline_weighting_bw_x_cpu(torch::Tensor grad_out,
                                        torch::Tensor weight,
                                        torch::Tensor basis,
                                        torch::Tensor weight_index) {
  CHECK_CPU(grad_out);
  CHECK_CPU(weight);
  CHECK_CPU(basis);
  CHECK_CPU(weight_index);

  CHECK_INPUT(grad_out.size(1) == weight.size(2));

  auto E = grad_out.size(0);
  auto M_in = weight.size(1);
  auto M_out = grad_out.size(1);
  auto S = basis.size(1);

  auto grad_x = at::zeros({E, M_in}, grad_out.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  AT_DISPATCH_FLOATING_TYPES(grad_out.scalar_type(), "weighting_bw_x", [&] {
    auto grad_out_data = grad_out.data_ptr<scalar_t>();
    auto weight_data = weight.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();
    auto grad_x_data = grad_x.data_ptr<scalar_t>();

    for (int64_t e = 0; e < E; e++) {
      for (int64_t m_out = 0; m_out < M_out; m_out++) {
        auto g =
            grad_out_data[e * grad_out.stride(0) + m_out * grad_out.stride(1)];
        for (int64_t s = 0; s < S; s++) {
          auto b = basis_data[e * S + s];
          auto wi = weight_index_data[e * S + s];
          for (int64_t m_in = 0; m_in < M_in; m_in++) {
            auto w =
                weight_data[wi * weight.stride(0) + m_in * weight.stride(1) +
                            m_out * weight.stride(2)];
            grad_x_data[e * M_in + m_in] += g * b * w;
          }
        }
      }
    }
  });

  return grad_x;
}

torch::Tensor spline_weighting_bw_weight_cpu(torch::Tensor grad_out,
                                             torch::Tensor x,
                                             torch::Tensor basis,
                                             torch::Tensor weight_index,
                                             int64_t kernel_size) {
  CHECK_CPU(grad_out);
  CHECK_CPU(x);
  CHECK_CPU(basis);
  CHECK_CPU(weight_index);

  auto E = grad_out.size(0);
  auto M_in = x.size(1);
  auto M_out = grad_out.size(1);
  auto S = basis.size(1);

  auto grad_weight = at::zeros({kernel_size, M_in, M_out}, grad_out.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "weighting_bw_weight", [&] {
    auto grad_out_data = grad_out.data_ptr<scalar_t>();
    auto x_data = x.data_ptr<scalar_t>();
    auto basis_data = basis.data_ptr<scalar_t>();
    auto grad_weight_data = grad_weight.data_ptr<scalar_t>();

    for (int64_t e = 0; e < E; e++) {
      for (int64_t m_out = 0; m_out < M_out; m_out++) {
        auto g =
            grad_out_data[e * grad_out.stride(0) + m_out * grad_out.stride(1)];
        for (int64_t s = 0; s < S; s++) {
          auto b = basis_data[e * S + s];
          auto wi = weight_index_data[e * S + s];
          for (int64_t m_in = 0; m_in < M_in; m_in++) {
            auto v = g * b * x_data[e * x.stride(0) + m_in * x.stride(1)];
            grad_weight_data[wi * M_in * M_out + m_in * M_out + m_out] += v;
          }
        }
      }
    }
  });

  return grad_weight;
}

torch::Tensor spline_weighting_bw_basis_cpu(torch::Tensor grad_out,
                                            torch::Tensor x,
                                            torch::Tensor weight,
                                            torch::Tensor weight_index) {
  CHECK_CPU(grad_out);
  CHECK_CPU(x);
  CHECK_CPU(weight);
  CHECK_CPU(weight_index);

  CHECK_INPUT(x.size(1) == weight.size(1));
  CHECK_INPUT(grad_out.size(1) == weight.size(2));

  auto E = grad_out.size(0);
  auto M_in = x.size(1);
  auto M_out = grad_out.size(1);
  auto S = weight_index.size(1);

  auto grad_basis = at::zeros({E, S}, grad_out.options());

  auto weight_index_data = weight_index.data_ptr<int64_t>();

  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "weighting_bw_basis", [&] {
    auto grad_out_data = grad_out.data_ptr<scalar_t>();
    auto x_data = x.data_ptr<scalar_t>();
    auto weight_data = weight.data_ptr<scalar_t>();
    auto grad_basis_data = grad_basis.data_ptr<scalar_t>();

    for (int64_t e = 0; e < E; e++) {
      for (int64_t m_out = 0; m_out < M_out; m_out++) {
        auto g =
            grad_out_data[e * grad_out.stride(0) + m_out * grad_out.stride(1)];
        for (int64_t s = 0; s < S; s++) {
          scalar_t b = 0;
          auto wi = weight_index_data[e * S + s];
          for (int64_t m_in = 0; m_in < M_in; m_in++) {
            auto w =
                weight_data[wi * weight.stride(0) + m_in * weight.stride(1) +
                            m_out * weight.stride(2)];
            w *= x_data[e * x.stride(0) + m_in * x.stride(1)];
            b += w;
          }
          grad_basis_data[e * S + s] += g * b;
        }
      }
    }
  });

  return grad_basis;
}