weighting_kernel.cu 8 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <ATen/ATen.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>

#include "atomics.cuh"

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

template <typename scalar_t>
__global__ void
weighting_fw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> out,
                    at::cuda::detail::TensorInfo<scalar_t, int64_t> x,
                    at::cuda::detail::TensorInfo<scalar_t, int64_t> weight,
                    at::cuda::detail::TensorInfo<scalar_t, int64_t> basis,
                    at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index,
                    size_t numel) {
  const size_t index = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
  for (ptrdiff_t i = index; i < numel; i += stride) {
    int64_t e = i / out.sizes[1], m_out = i % out.sizes[1];
    auto S = basis.sizes[1];
    scalar_t v = 0;

    for (ptrdiff_t s = 0; s < S; s++) {
      auto b = basis.data[e * S + s];
      auto wi = weight_index.data[e * S + s];
      for (ptrdiff_t m_in = 0; m_in < x.sizes[1]; m_in++) {
        auto tmp =
            weight.data[wi * weight.strides[0] + m_in * weight.strides[1] +
                        m_out * weight.strides[2]];
        tmp *= b * x.data[e * x.strides[0] + m_in * x.strides[1]];
        v += tmp;
      }
    }
rusty1s's avatar
rusty1s committed
36
    out.data[i] = v;
rusty1s's avatar
rusty1s committed
37
38
39
40
41
42
  }
}

at::Tensor weighting_fw_cuda(at::Tensor x, at::Tensor weight, at::Tensor basis,
                             at::Tensor weight_index) {
  auto E = x.size(0), M_out = weight.size(2);
rusty1s's avatar
rusty1s committed
43
  auto out = at::empty({E, M_out}, x.options());
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  AT_DISPATCH_FLOATING_TYPES(out.type(), "weighting_fw", [&] {
    weighting_fw_kernel<scalar_t><<<BLOCKS(out.numel()), THREADS>>>(
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(out),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(x),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(weight),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(basis),
        at::cuda::detail::getTensorInfo<int64_t, int64_t>(weight_index),
        out.numel());
  });
  return out;
}

template <typename scalar_t>
__global__ void weighting_bw_x_kernel(
    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_x,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_out,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> weight,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> basis,
    at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index, size_t numel) {
  const size_t index = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
  for (ptrdiff_t i = index; i < numel; i += stride) {
    int64_t e = i / grad_x.sizes[1], m_in = i % grad_x.sizes[1];
    auto S = basis.sizes[1];
    scalar_t v = 0;

    for (ptrdiff_t s = 0; s < S; s++) {
      auto b = basis.data[e * S + s];
      auto wi = weight_index.data[e * S + s];
      for (ptrdiff_t m_out = 0; m_out < grad_out.sizes[1]; m_out++) {
        auto tmp =
            weight.data[wi * weight.strides[0] + m_out * weight.strides[1] +
                        m_in * weight.strides[2]];
        tmp *= b *
               grad_out
                   .data[e * grad_out.strides[0] + m_out * grad_out.strides[1]];
        v += tmp;
      }
    }
rusty1s's avatar
rusty1s committed
83
    grad_x.data[i] = v;
rusty1s's avatar
rusty1s committed
84
85
86
87
88
89
  }
}

at::Tensor weighting_bw_x_cuda(at::Tensor grad_out, at::Tensor weight,
                               at::Tensor basis, at::Tensor weight_index) {
  auto E = grad_out.size(0), M_in = weight.size(1);
rusty1s's avatar
rusty1s committed
90
  auto grad_x = at::empty({E, M_in}, grad_out.options());
rusty1s's avatar
rusty1s committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  weight = weight.transpose(1, 2).contiguous();
  AT_DISPATCH_FLOATING_TYPES(grad_x.type(), "weighting_bw_x", [&] {
    weighting_bw_x_kernel<scalar_t><<<BLOCKS(grad_x.numel()), THREADS>>>(
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_x),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_out),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(weight),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(basis),
        at::cuda::detail::getTensorInfo<int64_t, int64_t>(weight_index),
        grad_x.numel());
  });
  return grad_x;
}

template <typename scalar_t>
__global__ void weighting_bw_w_kernel(
    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_weight,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_out,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> x,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> basis,
    at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index, size_t numel) {
  const size_t index = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
  for (ptrdiff_t i = index; i < numel; i += stride) {
    int64_t e = i / grad_out.sizes[1], m_out = i % grad_out.sizes[1];
    int64_t S = basis.sizes[1], M_in = x.sizes[1], M_out = grad_out.sizes[1];

    auto g =
        grad_out.data[e * grad_out.strides[0] + m_out * grad_out.strides[1]];
    for (ptrdiff_t s = 0; s < S; s++) {
      auto b = basis.data[e * S + s];
      auto wi = weight_index.data[e * S + s];
      for (ptrdiff_t m_in = 0; m_in < M_in; m_in++) {
        auto v = g * b * x.data[e * x.strides[0] + m_in * x.strides[1]];
        atomicAdd(&grad_weight.data[wi * M_in * M_out + m_in * M_out + m_out],
                  v);
      }
    }
  }
}

at::Tensor weighting_bw_w_cuda(at::Tensor grad_out, at::Tensor x,
                               at::Tensor basis, at::Tensor weight_index,
                               int64_t K) {
  auto M_in = x.size(1), M_out = grad_out.size(1);
rusty1s's avatar
rusty1s committed
135
  auto grad_weight = at::zeros({K, M_in, M_out}, grad_out.options());
rusty1s's avatar
rusty1s committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  AT_DISPATCH_FLOATING_TYPES(grad_out.type(), "weighting_bw_w", [&] {
    weighting_bw_w_kernel<scalar_t><<<BLOCKS(grad_out.numel()), THREADS>>>(
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_weight),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_out),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(x),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(basis),
        at::cuda::detail::getTensorInfo<int64_t, int64_t>(weight_index),
        grad_out.numel());
  });
  return grad_weight;
}

template <typename scalar_t>
__global__ void weighting_bw_b_kernel(
    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_basis,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_out,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> x,
    at::cuda::detail::TensorInfo<scalar_t, int64_t> weight,
    at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index, size_t numel) {
  const size_t index = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
  for (ptrdiff_t i = index; i < numel; i += stride) {
    int64_t e = i / grad_out.sizes[1], m_out = i % grad_out.sizes[1];
    auto S = grad_basis.sizes[1];

    auto g =
        grad_out.data[e * grad_out.strides[0] + m_out * grad_out.strides[1]];
    for (ptrdiff_t s = 0; s < S; s++) {
      scalar_t v = 0;
      auto wi = weight_index.data[e * S + s];
      for (ptrdiff_t m_in = 0; m_in < x.sizes[1]; m_in++) {
        auto w = weight.data[wi * weight.strides[0] + m_in * weight.strides[1] +
                             m_out * weight.strides[2]];
        v += g * w * x.data[e * x.strides[0] + m_in * x.strides[1]];
      }
      atomicAdd(&grad_basis.data[e * S + s], v);
    }
  }
}

at::Tensor weighting_bw_b_cuda(at::Tensor grad_out, at::Tensor x,
                               at::Tensor weight, at::Tensor weight_index) {
  auto E = x.size(0), S = weight_index.size(1);
rusty1s's avatar
rusty1s committed
179
  auto grad_basis = at::zeros({E, S}, grad_out.options());
rusty1s's avatar
rusty1s committed
180
181
182
183
184
185
186
187
188
189
190
  AT_DISPATCH_FLOATING_TYPES(grad_out.type(), "weighting_bw_b", [&] {
    weighting_bw_b_kernel<scalar_t><<<BLOCKS(grad_out.numel()), THREADS>>>(
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_basis),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_out),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(x),
        at::cuda::detail::getTensorInfo<scalar_t, int64_t>(weight),
        at::cuda::detail::getTensorInfo<int64_t, int64_t>(weight_index),
        grad_out.numel());
  });
  return grad_basis;
}