basis_kernel.cu 14.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <ATen/ATen.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

template <typename scalar_t> struct BasisForward {
  static inline __device__ scalar_t linear(scalar_t v, int64_t k_mod) {
    return 1 - v - k_mod + 2 * v * k_mod;
  }

  static inline __device__ scalar_t quadratic(scalar_t v, int64_t k_mod) {
    if (k_mod == 0)
      return 0.5 * v * v - v + 0.5;
    else if (k_mod == 1)
      return -v * v + v + 0.5;
    else
      return 0.5 * v * v;
  }

  static inline __device__ scalar_t cubic(scalar_t v, int64_t k_mod) {
    if (k_mod == 0)
      return (1 - v) * (1 - v) * (1 - v) / 6.0;
    else if (k_mod == 1)
      return (3 * v * v * v - 6 * v * v + 4) / 6;
    else if (k_mod == 2)
      return (-3 * v * v * v + 3 * v * v + 3 * v + 1) / 6;
    else
      return v * v * v / 6;
  }
};

#define BASIS_FORWARD(M, PSEUDO, KERNEL_SIZE, IS_OPEN_SPLINE, KERNEL_NAME)     \
  [&]() -> std::tuple<at::Tensor, at::Tensor> {                                \
    auto E = PSEUDO.size(0);                                                   \
    auto S = (int64_t)(pow(M + 1, KERNEL_SIZE.size(0)) + 0.5);                 \
rusty1s's avatar
rusty1s committed
38
39
    auto basis = at::empty({E, S}, PSEUDO.options());                          \
    auto weight_index = at::empty({E, S}, KERNEL_SIZE.options());              \
rusty1s's avatar
rusty1s committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                                                                               \
    AT_DISPATCH_FLOATING_TYPES(PSEUDO.type(), "basis_forward_##M", [&] {       \
      KERNEL_NAME<scalar_t><<<BLOCKS(basis.numel()), THREADS>>>(               \
          at::cuda::detail::getTensorInfo<scalar_t, int64_t>(basis),           \
          at::cuda::detail::getTensorInfo<int64_t, int64_t>(weight_index),     \
          at::cuda::detail::getTensorInfo<scalar_t, int64_t>(PSEUDO),          \
          KERNEL_SIZE.data<int64_t>(), IS_OPEN_SPLINE.data<uint8_t>(),         \
          basis.numel());                                                      \
    });                                                                        \
                                                                               \
    return std::make_tuple(basis, weight_index);                               \
  }()

#define BASIS_FORWARD_KERNEL(M, BASIS, WEIGHT_INDEX, PSEUDO, KERNEL_SIZE,      \
                             IS_OPEN_SPLINE, NUMEL, CODE)                      \
  [&] {                                                                        \
    const size_t index = blockIdx.x * blockDim.x + threadIdx.x;                \
    const size_t stride = blockDim.x * gridDim.x;                              \
    for (ptrdiff_t i = index; i < NUMEL; i += stride) {                        \
      int64_t e = i / BASIS.sizes[1], s = i % BASIS.sizes[1];                  \
      int64_t k = s, wi = 0, wi_offset = 1;                                    \
      scalar_t b = 1;                                                          \
                                                                               \
      for (ptrdiff_t d = 0; d < PSEUDO.sizes[1]; d++) {                        \
        auto k_mod = k % (M + 1);                                              \
        k /= M + 1;                                                            \
                                                                               \
        auto v = PSEUDO.data[e * PSEUDO.strides[0] + d * PSEUDO.strides[1]];   \
        v *= KERNEL_SIZE[d] - M * IS_OPEN_SPLINE[d];                           \
                                                                               \
        wi += (((int64_t)v + k_mod) % KERNEL_SIZE[d]) * wi_offset;             \
        wi_offset *= KERNEL_SIZE[d];                                           \
                                                                               \
        v -= floor(v);                                                         \
        v = CODE;                                                              \
        b *= v;                                                                \
      }                                                                        \
                                                                               \
rusty1s's avatar
rusty1s committed
78
79
      BASIS.data[i] = b;                                                       \
      WEIGHT_INDEX.data[i] = wi;                                               \
rusty1s's avatar
rusty1s committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    }                                                                          \
  }()

template <typename scalar_t>
__global__ void
linear_fw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> basis,
                 at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index,
                 at::cuda::detail::TensorInfo<scalar_t, int64_t> pseudo,
                 int64_t *kernel_size, uint8_t *is_open_spline, size_t numel) {
  BASIS_FORWARD_KERNEL(1, basis, weight_index, pseudo, kernel_size,
                       is_open_spline, numel,
                       BasisForward<scalar_t>::linear(v, k_mod));
}

std::tuple<at::Tensor, at::Tensor> linear_fw_cuda(at::Tensor pseudo,
                                                  at::Tensor kernel_size,
                                                  at::Tensor is_open_spline) {
  return BASIS_FORWARD(1, pseudo, kernel_size, is_open_spline,
                       linear_fw_kernel);
}

template <typename scalar_t>
__global__ void
quadratic_fw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> basis,
                    at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index,
                    at::cuda::detail::TensorInfo<scalar_t, int64_t> pseudo,
                    int64_t *kernel_size, uint8_t *is_open_spline,
                    size_t numel) {
  BASIS_FORWARD_KERNEL(2, basis, weight_index, pseudo, kernel_size,
                       is_open_spline, numel,
                       BasisForward<scalar_t>::quadratic(v, k_mod));
}

std::tuple<at::Tensor, at::Tensor>
quadratic_fw_cuda(at::Tensor pseudo, at::Tensor kernel_size,
                  at::Tensor is_open_spline) {
  return BASIS_FORWARD(2, pseudo, kernel_size, is_open_spline,
                       quadratic_fw_kernel);
}

template <typename scalar_t>
__global__ void
cubic_fw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> basis,
                at::cuda::detail::TensorInfo<int64_t, int64_t> weight_index,
                at::cuda::detail::TensorInfo<scalar_t, int64_t> pseudo,
                int64_t *kernel_size, uint8_t *is_open_spline, size_t numel) {
  BASIS_FORWARD_KERNEL(3, basis, weight_index, pseudo, kernel_size,
                       is_open_spline, numel,
                       BasisForward<scalar_t>::cubic(v, k_mod));
}

std::tuple<at::Tensor, at::Tensor> cubic_fw_cuda(at::Tensor pseudo,
                                                 at::Tensor kernel_size,
                                                 at::Tensor is_open_spline) {
  return BASIS_FORWARD(3, pseudo, kernel_size, is_open_spline, cubic_fw_kernel);
}

template <typename scalar_t> struct BasisBackward {
  static inline __device__ scalar_t linear(scalar_t v, int64_t k_mod) {
    return 2 * k_mod - 1;
  }

  static inline __device__ scalar_t quadratic(scalar_t v, int64_t k_mod) {
    if (k_mod == 0)
      return v - 1;
    else if (k_mod == 1)
      return -2 * v + 1;
    else
      return v;
  }

  static inline __device__ scalar_t cubic(scalar_t v, int64_t k_mod) {
    if (k_mod == 0)
      return (-v * v + 2 * v - 1) / 2;
    else if (k_mod == 1)
      return (3 * v * v - 4 * v) / 2;
    else if (k_mod == 2)
      return (-3 * v * v + 2 * v + 1) / 2;
    else
      return v * v / 2;
  }
};

#define BASIS_BACKWARD(M, GRAD_BASIS, PSEUDO, KERNEL_SIZE, IS_OPEN_SPLINE,     \
                       KERNEL_NAME)                                            \
  [&]() -> at::Tensor {                                                        \
    auto E = PSEUDO.size(0);                                                   \
    auto D = PSEUDO.size(1);                                                   \
rusty1s's avatar
rusty1s committed
168
    auto grad_pseudo = at::empty({E, D}, PSEUDO.options());                    \
rusty1s's avatar
rusty1s committed
169
170
171
172
173
174
175
176
177
178
179
                                                                               \
    AT_DISPATCH_FLOATING_TYPES(GRAD_BASIS.type(), "basis_backward_##M", [&] {  \
      KERNEL_NAME<scalar_t><<<BLOCKS(grad_pseudo.numel()), THREADS>>>(         \
          at::cuda::detail::getTensorInfo<scalar_t, int64_t>(grad_pseudo),     \
          at::cuda::detail::getTensorInfo<scalar_t, int64_t>(GRAD_BASIS),      \
          at::cuda::detail::getTensorInfo<scalar_t, int64_t>(PSEUDO),          \
          KERNEL_SIZE.data<int64_t>(), IS_OPEN_SPLINE.data<uint8_t>(),         \
          grad_pseudo.numel());                                                \
    });                                                                        \
                                                                               \
    return grad_pseudo;                                                        \
rusty1s's avatar
rusty1s committed
180
  }()
rusty1s's avatar
rusty1s committed
181

rusty1s's avatar
rusty1s committed
182
183
184
185
186
187
#define BASIS_BACKWARD_KERNEL(M, GRAD_PSEUDO, GRAD_BASIS, PSEUDO, KERNEL_SIZE, \
                              IS_OPEN_SPLINE, NUMEL, CODE, GRAD_CODE)          \
  [&] {                                                                        \
    const size_t index = blockIdx.x * blockDim.x + threadIdx.x;                \
    const size_t stride = blockDim.x * gridDim.x;                              \
    for (ptrdiff_t i = index; i < NUMEL; i += stride) {                        \
rusty1s's avatar
rusty1s committed
188
189
190
191
192
193
194
195
      int64_t e = i / GRAD_PSEUDO.sizes[1], d = i % GRAD_PSEUDO.sizes[1];      \
      scalar_t g = 0, tmp;                                                     \
                                                                               \
      for (ptrdiff_t s = 0; s < GRAD_BASIS.sizes[1]; s++) {                    \
        auto k_mod = (s / (int64_t)(pow(M + 1, d) + 0.5)) % (M + 1);           \
        auto v = PSEUDO.data[e * PSEUDO.strides[0] + d * PSEUDO.strides[1]];   \
        v *= KERNEL_SIZE[d] - M * IS_OPEN_SPLINE[d];                           \
        v -= floor(v);                                                         \
rusty1s's avatar
rusty1s committed
196
        v = GRAD_CODE;                                                         \
rusty1s's avatar
rusty1s committed
197
198
199
200
201
202
203
204
        tmp = v;                                                               \
                                                                               \
        for (ptrdiff_t d_it = 1; d_it < GRAD_PSEUDO.sizes[1]; d_it++) {        \
          auto d_new = d_it - (d >= d_it);                                     \
          k_mod = (s / (int64_t)(pow(M + 1, d_new) + 0.5)) % (M + 1);          \
          v = PSEUDO.data[e * pseudo.strides[0] + d_new * PSEUDO.strides[1]];  \
          v *= KERNEL_SIZE[d_new] - M * IS_OPEN_SPLINE[d_new];                 \
          v -= floor(v);                                                       \
rusty1s's avatar
rusty1s committed
205
          v = CODE;                                                            \
rusty1s's avatar
rusty1s committed
206
207
208
209
210
211
212
          tmp *= v;                                                            \
        }                                                                      \
        g += tmp *                                                             \
             GRAD_BASIS                                                        \
                 .data[e * GRAD_BASIS.strides[0] + s * GRAD_BASIS.strides[1]]; \
      }                                                                        \
      g *= KERNEL_SIZE[d] - M * IS_OPEN_SPLINE[d];                             \
rusty1s's avatar
rusty1s committed
213
      GRAD_PSEUDO.data[i] = g;                                                 \
rusty1s's avatar
rusty1s committed
214
215
216
    }                                                                          \
  }()

rusty1s's avatar
rusty1s committed
217
218
219
220
221
222
223
224
225
226
227
228
template <typename scalar_t>
__global__ void
linear_bw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_pseudo,
                 at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_basis,
                 at::cuda::detail::TensorInfo<scalar_t, int64_t> pseudo,
                 int64_t *kernel_size, uint8_t *is_open_spline, size_t numel) {
  BASIS_BACKWARD_KERNEL(1, grad_pseudo, grad_basis, pseudo, kernel_size,
                        is_open_spline, numel,
                        BasisForward<scalar_t>::linear(v, k_mod),
                        BasisBackward<scalar_t>::linear(v, k_mod));
}

rusty1s's avatar
rusty1s committed
229
230
at::Tensor linear_bw_cuda(at::Tensor grad_basis, at::Tensor pseudo,
                          at::Tensor kernel_size, at::Tensor is_open_spline) {
rusty1s's avatar
rusty1s committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  return BASIS_BACKWARD(1, grad_basis, pseudo, kernel_size, is_open_spline,
                        linear_bw_kernel);
}

template <typename scalar_t>
__global__ void
quadratic_bw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_pseudo,
                    at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_basis,
                    at::cuda::detail::TensorInfo<scalar_t, int64_t> pseudo,
                    int64_t *kernel_size, uint8_t *is_open_spline,
                    size_t numel) {
  BASIS_BACKWARD_KERNEL(2, grad_pseudo, grad_basis, pseudo, kernel_size,
                        is_open_spline, numel,
                        BasisForward<scalar_t>::quadratic(v, k_mod),
                        BasisBackward<scalar_t>::quadratic(v, k_mod));
rusty1s's avatar
rusty1s committed
246
247
248
249
250
}

at::Tensor quadratic_bw_cuda(at::Tensor grad_basis, at::Tensor pseudo,
                             at::Tensor kernel_size,
                             at::Tensor is_open_spline) {
rusty1s's avatar
rusty1s committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  return BASIS_BACKWARD(2, grad_basis, pseudo, kernel_size, is_open_spline,
                        quadratic_bw_kernel);
}

template <typename scalar_t>
__global__ void
cubic_bw_kernel(at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_pseudo,
                at::cuda::detail::TensorInfo<scalar_t, int64_t> grad_basis,
                at::cuda::detail::TensorInfo<scalar_t, int64_t> pseudo,
                int64_t *kernel_size, uint8_t *is_open_spline, size_t numel) {
  BASIS_BACKWARD_KERNEL(3, grad_pseudo, grad_basis, pseudo, kernel_size,
                        is_open_spline, numel,
                        BasisForward<scalar_t>::cubic(v, k_mod),
                        BasisBackward<scalar_t>::cubic(v, k_mod));
rusty1s's avatar
rusty1s committed
265
266
267
268
}

at::Tensor cubic_bw_cuda(at::Tensor grad_basis, at::Tensor pseudo,
                         at::Tensor kernel_size, at::Tensor is_open_spline) {
rusty1s's avatar
rusty1s committed
269
270
  return BASIS_BACKWARD(3, grad_basis, pseudo, kernel_size, is_open_spline,
                        cubic_bw_kernel);
rusty1s's avatar
rusty1s committed
271
}