compute_spline_basis.py 4.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch

from ....utils.cuda import (cuda_num_threads, Stream, Dtype, load_kernel,
                            kernel_loop, get_blocks)

_spline_kernel_linear = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, ${Dtype}* amount, long* index,
const long* kernel_size, const long* is_open_spline, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${k_max};
    int k_idx = idx % ${k_max};

    int K = ${K};
    int k_idx_mod;
    int bot;
    int top;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} a = 1.0;
    long i = 0;

    for (int d_idx = 0; d_idx < ${dim}; d_idx++) {

      K /= kernel_size[d_idx];

      k_idx_mod = k_idx % 2;
      k_idx >>= 1;

      value = input[e_idx * ${dim} + d_idx] *
              (kernel_size[d_idx] - is_open_spline[d_idx]);

      frac = value - floor(value);

      a *= (1 - k_idx_mod) * frac + k_idx_mod * (1 - frac);

      bot = int(floor(value));
      top = (bot + 1) % kernel_size[d_idx];
      bot %= kernel_size[d_idx];
      i += (k_idx_mod * bot + (1 - k_idx_mod) * top) * K;
    }

    amount[idx] = a;
    index[idx] = i;
  }
}
'''

_spline_kernel_quadratic = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, ${Dtype}* amount, long* index,
const long* kernel_size, const long* is_open_spline, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads) {

    const int e_idx = idx / ${k_max};
    int k_idx = idx % ${k_max};

    int K = ${K};
    int k_idx_mod;
    int pos;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} a = 1.0;
    long i = 0;

    for (int d_idx = 0; d_idx < ${dim}; d_idx++) {

      K /= kernel_size[d_idx];

      k_idx_mod = k_idx % 3;
      k_idx /= 3;

      value = input[e_idx * ${dim} + d_idx] *
              (kernel_size[d_idx] - (2 * is_open_spline[d_idx]));

      frac = value - floor(value);

      if (k_idx_mod == 0) a *= 0.5 * (1- frac) * (1-frac);
      else if (k_idx_mod == 1) a *= -frac * frac + frac + 0.5;
      else a *= 0.5 * frac * frac;

      pos = int(floor(value)) + k_idx_mod;
      pos %= kernel_size[d_idx];

      i += pos * K;
    }
    amount[idx] = a;
    index[idx] = i;
  }
}
'''

_spline_kernel_cubic = kernel_loop + '''
extern "C"
__global__ void spline_kernel(
const ${Dtype}* input, ${Dtype}* amount, long* index,
const long* kernel_size, const long* is_open_spline, int num_threads) {

  CUDA_KERNEL_LOOP(idx, num_threads}) {

    const int e_idx = idx / ${k_max};
    int k_idx = idx % ${k_max};

    int K = ${K};
    int k_idx_mod;
    int pos;
    ${Dtype} value;
    ${Dtype} frac;
    ${Dtype} a = 1.0;
    long i = 0;

    for (int d_idx = 0; d_idx < ${dim}; d_idx++) {

      K /= kernel_size[d_idx];

      k_idx_mod = k_idx % 4;
      k_idx /= 4;

      value = input[e_idx * ${dim} + d_idx] *
              (kernel_size[d_idx] - (3 * is_open_spline[d_idx]));

      frac = value - floor(value);

      if (k_idx_mod == 0) a *= (1 - frac) * (1 - frac) * (1 - frac) / 6.0;
      else if (k_idx_mod == 1)
        a *= (3 * frac * frac * frac - 6 * frac * frac + 4) / 6.0;
      else if (k_idx_mod == 2)
        a *= (-3 * frac * frac * frac + 3 * frac * frac + 3 * frac + 1) / 6.0;
      else a *= frac * frac * frac / 6.0;

      pos = int(floor(value)) + k_idx_mod;
      pos %= kernel_size[d_idx];

      i += pos * K;
    }
    amount[idx] = a;
    index[idx] = i;
  }
}
'''


148
149
def get_basis_kernel(k_max, K, dim, degree):
    if degree == 3:
150
        _spline_kernel = _spline_kernel_cubic
151
    elif degree == 2:
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        _spline_kernel = _spline_kernel_quadratic
    else:
        _spline_kernel = _spline_kernel_linear

    cuda_tensor = torch.FloatTensor([1]).cuda()
    with torch.cuda.device_of(cuda_tensor):
        f = load_kernel(
            'spline_kernel',
            _spline_kernel,
            Dtype='float',
            k_max=k_max,
            dim=dim,
            K=K)
    return f

167

168
169
170
171
172
def compute_spline_basis(input, kernel_size, is_open_spline, K, basis_kernel):
    assert input.is_cuda and kernel_size.is_cuda and is_open_spline.is_cuda

    input = input.unsqueeze(1) if len(input.size()) < 2 else input
    num_edges, dim = input.size()
173
    k_max = 2 ** dim
174
175
176
177
178
179
180

    amount = input.new(num_edges, k_max)
    index = input.new(num_edges, k_max).long()
    num_threads = amount.numel()

    with torch.cuda.device_of(input):
        basis_kernel(block=(cuda_num_threads, 1, 1),
181
182
183
184
185
186
187
188
189
190
                     grid=(get_blocks(num_threads), 1, 1),
                     args=[
                         input.data_ptr(),
                         amount.data_ptr(),
                         index.data_ptr(),
                         kernel_size.data_ptr(),
                         is_open_spline.data_ptr(),
                         num_threads
                     ],
                     stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))
191
192

    return amount, index